Belavin Elliptic R-Matrices and Exchange Algebras

被引:0
|
作者
A. V. Odesskii
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
来源
Functional Analysis and Its Applications | 2002年 / 36卷
关键词
Functional Analysis; Commutation Relation; Exchange Relation; Baxter Equation; Exchange Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study Zamolodchikov algebras whose commutation relations are described by Belavin matrices defining a solution of the Yang–Baxter equation (Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices). Homomorphisms of Zamolodchikov algebras into dynamical algebras with exchange relations and also of algebras with exchange relations into Zamolodchikov algebras are constructed. It turns out that the structure of these algebras with exchange relations depends substantially on the primitive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n$$ \end{document}th root of unity entering the definition of Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices.
引用
收藏
页码:49 / 61
页数:12
相关论文
共 50 条
  • [11] Classical r-matrices and Novikov algebras
    Burde, Dietrich
    GEOMETRIAE DEDICATA, 2006, 122 (01) : 145 - 157
  • [12] A SIMPLE CONSTRUCTION OF ELLIPTIC R-MATRICES
    FELDER, G
    PASQUIER, V
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) : 167 - 171
  • [13] Classical r-Matrices and Novikov Algebras
    Dietrich Burde
    Geometriae Dedicata, 2006, 122 : 145 - 157
  • [14] Modified basis and quantum R-matrices corresponding to belavin-drinfeld triples
    Isaev, AP
    Ogievetsky, O
    NEW DEVELOPMENTS IN FUNDAMENTAL INTERACTION THEORIES, 2001, 589 : 241 - 248
  • [15] Fock representations of ZF algebras and R-matrices
    Gandalf Lechner
    Charley Scotford
    Letters in Mathematical Physics, 2020, 110 : 1623 - 1643
  • [16] Rational R-matrices and exceptional Lie algebras
    MacKay, N. J.
    Taylor, A.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1231 - 1236
  • [17] Affinizations and R-matrices for quiver Hecke algebras
    Kashiwara, Masaki
    Park, Euiyong
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (05) : 1161 - 1193
  • [18] COLOR LIE-ALGEBRAS AND R-MATRICES
    MCANALLY, DS
    LETTERS IN MATHEMATICAL PHYSICS, 1995, 33 (03) : 249 - 254
  • [19] QUANTUM BAXTER-BELAVIN R-MATRICES AND MULTIDIMENSIONAL LAX PAIRS FOR PAINLEVE VI
    Levin, A. M.
    Olshanetsky, M. A.
    Zotov, A. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 184 (01) : 924 - 939
  • [20] Quantum Baxter-Belavin R-matrices and multidimensional lax pairs for Painlevé VI
    A. M. Levin
    M. A. Olshanetsky
    A. V. Zotov
    Theoretical and Mathematical Physics, 2015, 184 : 924 - 939