Twisted traces of quantum intertwiners and quantum dynamical R-matrices corresponding to generalized Belavin-Drinfeld triples

被引:3
|
作者
Etingof, P
Schiffmann, O
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Math, New Haven, CT 06510 USA
关键词
D O I
10.1007/PL00005562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider weighted traces of products of intertwining operators for quan tum groups U-q(g), suitably twisted by a "generalized Belavin-Drinfeld triple". We derive two commuting sets of difference equations- the (twisted) Macdonald-Ruijsenaars system and the (twisted) quantum Knizhnik-Zamolodchikov-Bernard (qKZB) system. These systems involve the nonstandard quantum R-matrices defined in a previous joint work with T. Schedler ([ESS]). When the generalized Belavin-Drinfeld triple comes from an automorphism of the Lie algebra g, we also derive two additional sets of difference equations, the dual Macdonald-Ruijsenaars system and the dual qKZB equations.
引用
收藏
页码:633 / 663
页数:31
相关论文
共 20 条