Belavin Elliptic R-Matrices and Exchange Algebras

被引:0
|
作者
A. V. Odesskii
机构
[1] Russian Academy of Sciences,L. D. Landau Institute of Theoretical Physics
关键词
Functional Analysis; Commutation Relation; Exchange Relation; Baxter Equation; Exchange Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
We study Zamolodchikov algebras whose commutation relations are described by Belavin matrices defining a solution of the Yang–Baxter equation (Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices). Homomorphisms of Zamolodchikov algebras into dynamical algebras with exchange relations and also of algebras with exchange relations into Zamolodchikov algebras are constructed. It turns out that the structure of these algebras with exchange relations depends substantially on the primitive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n$$ \end{document}th root of unity entering the definition of Belavin \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$R$$ \end{document}-matrices.
引用
收藏
页码:49 / 61
页数:12
相关论文
共 50 条
  • [1] Belavin elliptic R-matrices and exchange algebras
    Odesskii, AV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (01) : 49 - 61
  • [2] Elliptic R-matrices and Feigin and Odesskii's elliptic algebras
    Chirvasitu, Alex
    Kanda, Ryo
    Smith, S. Paul
    SELECTA MATHEMATICA-NEW SERIES, 2023, 29 (02):
  • [3] Elliptic R-matrices and Feigin and Odesskii’s elliptic algebras
    Alex Chirvasitu
    Ryo Kanda
    S. Paul Smith
    Selecta Mathematica, 2023, 29
  • [4] CONSTRUCTIONS OF SKLYANIN ELLIPTIC ALGEBRAS AND QUANTUM R-MATRICES
    ODESSKII, AV
    FEIGIN, BL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 31 - 38
  • [5] Integrable systems with Belavin-Drinfeld R-matrices
    Totland, H
    PHYSICS LETTERS A, 1997, 225 (4-6) : 263 - 268
  • [6] R-matrices for Leibniz algebras
    Felipe, RL
    López-Reyes, N
    Ongay, F
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (02) : 157 - 164
  • [7] R-Matrices for Leibniz Algebras
    Raúl Felipe
    Nancy López-Reyes
    Fausto Ongay
    Letters in Mathematical Physics, 2003, 63 : 157 - 164
  • [8] QUADRATIC ALGEBRAS BASED ON SL(NM) ELLIPTIC QUANTUM R-MATRICES
    Sechin, I. A.
    Zotov, A., V
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1156 - 1164
  • [9] Odd supersymmetrization of elliptic R-matrices *
    Levin, A.
    Olshanetsky, M.
    Zotov, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (18)
  • [10] SHUFFLE ALGEBRAS FOR QUIVERS AND R-MATRICES
    Negut, Andrei
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2023, 22 (06) : 2583 - 2618