Elliptic R-matrices and Feigin and Odesskii's elliptic algebras

被引:2
|
作者
Chirvasitu, Alex [1 ]
Kanda, Ryo [2 ]
Smith, S. Paul [3 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[2] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 02期
关键词
Elliptic algebra; Quantum Yang-Baxter equation; Sklyanin algebra; Koszul algebra; Artin-Schelter regular algebra; IRREDUCIBLE REPRESENTATIONS; POISSON STRUCTURES; REGULAR ALGEBRAS; GRADED ALGEBRAS; SKLYANIN; MODULES; GEOMETRY; CURVES; SPACES;
D O I
10.1007/s00029-023-00827-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algebras Q(n,k)(E, t) introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers n > k= 1, a complex elliptic curve E, and a point t ? E. The main result in this paper is that Q(n,k)(E, t) has the same Hilbert series as the polynomial ring on n variables when t is not a torsion point. We also show that Q(n,k)(E, t) is a Koszul algebra, hence of global dimension n when t is not a torsion point, and, for all but countably many t, Q(n,k)(E, t) is Artin-Schelter regular. The proofs use the fact that the space of quadratic relations defining Q(n,k)(E, t) is the image of an operator R-t (t) that belongs to a family of operators R-t (z) : C-n ? C-n? C-n ? C-n, z ? C, that (we will show) satisfy the quantum Yang-Baxter equation with spectral parameter.
引用
收藏
页数:81
相关论文
共 50 条
  • [1] Elliptic R-matrices and Feigin and Odesskii’s elliptic algebras
    Alex Chirvasitu
    Ryo Kanda
    S. Paul Smith
    Selecta Mathematica, 2023, 29
  • [2] Feigin and Odesskii's elliptic algebras
    Chirvasitu, Alex
    Kanda, Ryo
    Smith, S. Paul
    JOURNAL OF ALGEBRA, 2021, 581 : 173 - 225
  • [3] Belavin elliptic R-matrices and exchange algebras
    Odesskii, AV
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2002, 36 (01) : 49 - 61
  • [4] Belavin Elliptic R-Matrices and Exchange Algebras
    A. V. Odesskii
    Functional Analysis and Its Applications, 2002, 36 : 49 - 61
  • [5] Maps from Feigin and Odesskii's elliptic algebras to twisted homogeneous coordinate rings
    Chirvasitu, Alex
    Kanda, Ryo
    Smith, S. Paul
    FORUM OF MATHEMATICS SIGMA, 2021, 9
  • [6] CONSTRUCTIONS OF SKLYANIN ELLIPTIC ALGEBRAS AND QUANTUM R-MATRICES
    ODESSKII, AV
    FEIGIN, BL
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1993, 27 (01) : 31 - 38
  • [7] Classical r-matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions
    Braden, HW
    Dolgushev, VA
    Olshanetsky, MA
    Zotov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (25): : 6979 - 7000
  • [8] Odd supersymmetrization of elliptic R-matrices *
    Levin, A.
    Olshanetsky, M.
    Zotov, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (18)
  • [9] QUADRATIC ALGEBRAS BASED ON SL(NM) ELLIPTIC QUANTUM R-MATRICES
    Sechin, I. A.
    Zotov, A., V
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (02) : 1156 - 1164
  • [10] A SIMPLE CONSTRUCTION OF ELLIPTIC R-MATRICES
    FELDER, G
    PASQUIER, V
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) : 167 - 171