Elliptic R-matrices and Feigin and Odesskii's elliptic algebras

被引:2
|
作者
Chirvasitu, Alex [1 ]
Kanda, Ryo [2 ]
Smith, S. Paul [3 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[2] Osaka Metropolitan Univ, Grad Sch Sci, Dept Math, 3-3-138 Sugimoto, Osaka 5588585, Japan
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
来源
SELECTA MATHEMATICA-NEW SERIES | 2023年 / 29卷 / 02期
关键词
Elliptic algebra; Quantum Yang-Baxter equation; Sklyanin algebra; Koszul algebra; Artin-Schelter regular algebra; IRREDUCIBLE REPRESENTATIONS; POISSON STRUCTURES; REGULAR ALGEBRAS; GRADED ALGEBRAS; SKLYANIN; MODULES; GEOMETRY; CURVES; SPACES;
D O I
10.1007/s00029-023-00827-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algebras Q(n,k)(E, t) introduced by Feigin and Odesskii as generalizations of the 4-dimensional Sklyanin algebras form a family of quadratic algebras parametrized by coprime integers n > k= 1, a complex elliptic curve E, and a point t ? E. The main result in this paper is that Q(n,k)(E, t) has the same Hilbert series as the polynomial ring on n variables when t is not a torsion point. We also show that Q(n,k)(E, t) is a Koszul algebra, hence of global dimension n when t is not a torsion point, and, for all but countably many t, Q(n,k)(E, t) is Artin-Schelter regular. The proofs use the fact that the space of quadratic relations defining Q(n,k)(E, t) is the image of an operator R-t (t) that belongs to a family of operators R-t (z) : C-n ? C-n? C-n ? C-n, z ? C, that (we will show) satisfy the quantum Yang-Baxter equation with spectral parameter.
引用
收藏
页数:81
相关论文
共 50 条
  • [31] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    Oh, Se-Jin
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (04): : 1987 - 2015
  • [32] Correction to: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras
    Seok-Jin Kang
    Masaki Kashiwara
    Myungho Kim
    Inventiones mathematicae, 2019, 216 : 597 - 599
  • [33] SYMMETRIC QUIVER HECKE ALGEBRAS AND R-MATRICES OF QUANTUM AFFINE ALGEBRAS, II
    Kang, Seok-Jin
    Kashiwara, Masaki
    Kim, Myungho
    DUKE MATHEMATICAL JOURNAL, 2015, 164 (08) : 1549 - 1602
  • [34] QUANTIZED AFFINE ALGEBRAS AND PARAMETER-DEPENDENT R-MATRICES
    BRACKEN, AJ
    GOULD, MD
    ZHANG, YZ
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1995, 51 (02) : 177 - 194
  • [35] Classical R-matrices on Poisson algebras and related dispersionless systems
    Blaszak, M
    PHYSICS LETTERS A, 2002, 297 (3-4) : 191 - 195
  • [36] SPECTRAL DECOMPOSITION OF R-MATRICES FOR EXCEPTIONAL LIE-ALGEBRAS
    SERGEEV, SM
    MODERN PHYSICS LETTERS A, 1991, 6 (10) : 923 - 927
  • [37] RECURSIVE CALCULATION OF THE R-MATRICES OF Q-DEFORMED ALGEBRAS
    LIENERT, CR
    BUTLER, PH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21): : 5577 - 5586
  • [38] Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras IV
    Seok-Jin Kang
    Masaki Kashiwara
    Myungho Kim
    Se-Jin Oh
    Selecta Mathematica, 2016, 22 : 1987 - 2015
  • [39] Quasigraded bases in loop algebras and classical rational r-matrices
    Skrypnyk, T.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [40] Induced representations of affine Hecke algebras and singularities of R-matrices
    Leclerc, B
    Thibon, JY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (12): : 1117 - 1122