Directed path spaces via discrete vector fields

被引:0
|
作者
Krzysztof Ziemiański
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
关键词
Semi-cubical set; Directed path space; Discrete vector field; Permutahedron; Configuration space;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be an arbitrary semi-cubical set that can be embedded in a standard cube. Using Discrete Morse Theory, we construct a CW-complex that is homotopy equivalent to the space P→(K)vw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {P}(K)_v^w$$\end{document} of directed paths between two given vertices v, w of K. In many cases, this construction is minimal: the cells of the constructed CW-complex are in 1–1 correspondence with the generators of the homology of P→(K)vw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {P}(K)_v^w$$\end{document}.
引用
收藏
页码:51 / 74
页数:23
相关论文
共 50 条
  • [31] Discrete analog of the Jacobi set for vector fields
    National Laboratory Astana, Nazarbayev University, 53, Kabanbay Batyr Ave., Astana
    010000, Kazakhstan
    不详
    677000, Russia
    不详
    630090, Russia
    arXiv, 1600,
  • [32] Discrete Analog of the Jacobi Set for Vector Fields
    Adilkhanov, A. N.
    Pavlov, A. V.
    Taimanov, I. A.
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2019, 2019, 11382 : 1 - 11
  • [33] Linear operators on Kothe spaces of vector fields
    Chitescu, Ion
    Siretchi, Liliana
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (02): : 53 - 80
  • [34] Orbits of families of vector fields on subcartesian spaces
    Sniatycki, J
    ANNALES DE L INSTITUT FOURIER, 2003, 53 (07) : 2257 - +
  • [35] On geometric vector fields of Minkowski spaces and their applications
    Vincze, C
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (01) : 1 - 20
  • [36] ON MEROMORPHIC VECTOR-FIELDS ON PROJECTIVE SPACES
    BALLICO, E
    AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) : 1135 - 1138
  • [37] Sumsets in vector spaces over finite fields
    Eliahou, S
    Kervaire, M
    JOURNAL OF NUMBER THEORY, 1998, 71 (01) : 12 - 39
  • [38] Locally solvable vector fields and Hardy spaces
    Hoepfner, G.
    Hounie, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 247 (02) : 378 - 416
  • [39] PROJECTIONS IN VECTOR SPACES OVER FINITE FIELDS
    Chen, Changhao
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 171 - 185
  • [40] phi( Ric)-VECTOR FIELDS IN RIEMANNIAN SPACES
    Hinterleitner, Irena
    Kiosak, Volodymyr A.
    ARCHIVUM MATHEMATICUM, 2008, 44 (05): : 385 - 390