phi( Ric)-VECTOR FIELDS IN RIEMANNIAN SPACES

被引:0
|
作者
Hinterleitner, Irena [1 ]
Kiosak, Volodymyr A. [2 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Tech 2896 2, Brno 61669, Czech Republic
[2] Friedrich Schiller Univ Jena, Math Inst, D-07743 Jena, Germany
来源
ARCHIVUM MATHEMATICUM | 2008年 / 44卷 / 05期
关键词
special vector field; pseudo-Riemannian spaces; Riemannian spaces; symmetric spaces; Kasner metric;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study vector fields in Riemannian spaces, which satisfy del phi = mu, Ric, mu = const. We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and phi(Ric)- vector fields cannot exist simultaneously. It was found that Riemannian spaces with phi(Ric)-vector fields of constant length have constant scalar curvature. The conditions for the existence of phi(Ric)-vector fields in symmetric spaces are given.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [1] φ(Ric) - Vector Fields on Conformally Flat Spaces
    Hinterleitner, I.
    Kiosak, V.
    [J]. GEOMETRIC METHODS IN PHYSICS, 2009, 1191 : 98 - +
  • [2] Geodesic Mappings of Spaces with φ(Ric) Vector Fields
    Vashpanov, Y.
    Olshevska, O.
    Lesechko, O.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [3] The geometry of closed conformal vector fields on Riemannian spaces
    A. Caminha
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2011, 42 : 277 - 300
  • [4] Concircular vector fields on semi-Riemannian spaces
    Shandra I.G.
    [J]. Journal of Mathematical Sciences, 2007, 142 (5) : 2419 - 2435
  • [5] The geometry of closed conformal vector fields on Riemannian spaces
    Caminha, A.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02): : 277 - 300
  • [6] Conformal vector fields on pseudo-Riemannian spaces
    Kuhnel, W
    Rademacher, HB
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (03) : 237 - 250
  • [7] GENERALIZED V-Ric VECTOR FIELDS ON CONTACT PSEUDO-RIEMANNIAN MANIFOLDS
    Venkatesha, V.
    Kumara, H. Aruna
    Naik, Devaraja Mallesha
    [J]. MATEMATICKI VESNIK, 2023, 75 (03): : 166 - 174
  • [8] Harmonic and minimal unit vector fields on Riemannian symmetric spaces
    Berndt, J
    Vanhecke, L
    Verhóczki, L
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2003, 47 (04) : 1273 - 1286
  • [9] Spaces of conformal vector fields on Pseudo-Riemannian manifolds
    Kim, DS
    Kim, YH
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 471 - 484
  • [10] STRUCTURE THEOREMS FOR RIEMANNIAN RIC-SEMISYMMETRIC SPACES
    MIRZOYAN, VA
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1992, (06): : 80 - 89