Geodesic Mappings of Spaces with φ(Ric) Vector Fields

被引:1
|
作者
Vashpanov, Y. [1 ]
Olshevska, O. [2 ]
Lesechko, O. [1 ]
机构
[1] Odessa State Acad Civil Engn & Architecture, Inst Engn, 4 Didrihson Str, UA-65029 Odessa, Ukraine
[2] Odessa Natl Acad Food Technol, 112 Kanatnaja Str, UA-65039 Odessa, Ukraine
关键词
D O I
10.1063/5.0033965
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper treats a special type of pseudo-Riemannian spaces, namely those which permit phi(Ric)- vector fields. These spaces are widely applied in mechanics and relativity theory. Authors demonstrated a shape taken by a linear form of basic equations of theory of geodesic mappings for the above-mentioned spaces. These equations take a shape of a system of differential equations in covariant derivatives. Let us find integrability conditions for this system. The research is conducted locally in a tensor form, without limitations on a sign and a signature of a metric tensor.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Geodesic Mappings of Vn(K)-Spaces and Concircular Vector Fields
    Shandra, Igor G.
    Mikes, Josef
    [J]. MATHEMATICS, 2019, 7 (08)
  • [2] φ(Ric) - Vector Fields on Conformally Flat Spaces
    Hinterleitner, I.
    Kiosak, V.
    [J]. GEOMETRIC METHODS IN PHYSICS, 2009, 1191 : 98 - +
  • [3] phi( Ric)-VECTOR FIELDS IN RIEMANNIAN SPACES
    Hinterleitner, Irena
    Kiosak, Volodymyr A.
    [J]. ARCHIVUM MATHEMATICUM, 2008, 44 (05): : 385 - 390
  • [4] GEODESIC MAPPINGS OF EINSTEIN SPACES
    MIKESH, I
    [J]. MATHEMATICAL NOTES, 1980, 28 (5-6) : 922 - 924
  • [5] GEODESIC MAPPINGS OF LN SPACES
    SINYUKOVA, EN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1982, (03): : 57 - 61
  • [6] Injective mappings and solvable vector fields of Euclidean spaces
    dos Santos, JR
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2004, 136 (1-3) : 261 - 274
  • [7] NORMAL GEODESIC MAPPINGS OF RIEMANNIAN SPACES
    SINUKOV, NS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1956, 111 (04): : 766 - 767
  • [8] GEODESIC VECTOR FIELDS OF INVARIANT (alpha, beta)-METRICS ON HOMOGENEOUS SPACES
    Parhizkar, M.
    Moghaddam, H. R. Salimi
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (02): : 39 - 44
  • [9] Geodesic and almost geodesic mappings onto Ricci symmetric spaces
    Berezovskii, V
    Peska, P.
    Mikes, J.
    [J]. MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 43 - 49
  • [10] A Note on Geodesic Vector Fields
    Deshmukh, Sharief
    Mikes, Josef
    Bin Turki, Nasser
    Vilcu, Gabriel-Eduard
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 16