Geodesic and almost geodesic mappings onto Ricci symmetric spaces

被引:0
|
作者
Berezovskii, V [1 ]
Peska, P.
Mikes, J.
机构
[1] Uman Natl Univ Hort, Dept Math, Inst 1, Uman, Ukraine
关键词
geodesic mapping; almost geodesic mapping; spaces with affine connection; (pseudo-) Riemannian space; AFFINE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is devoted to study of geodesic and almost geodesic mappings of special spaces with affine connection. In the first section, we mention the basic definition of geodesic and almost geodesic mappings. The next section is devoted to geodesic mappings onto Ricci symmetric manifolds and its fundamental diferential equation in Cauchy type form in covariant derivatives. We also study almost geodesic mappings of the first type onto symmetric space.
引用
收藏
页码:43 / 49
页数:7
相关论文
共 50 条
  • [1] Canonical Almost Geodesic Mappings of the First Type onto Generalized Ricci Symmetric Spaces
    Berezovski, Vladimir
    Cherevko, Yevhen
    Hinterleitner, Irena
    Mikes, Josef
    [J]. FILOMAT, 2022, 36 (04) : 1089 - 1097
  • [2] ALMOST GEODESIC MAPPINGS OF RIEMANN SPACES ONTO SYMMETRIC RIEMANN SPACES
    SOBCHUK, VS
    [J]. MATHEMATICAL NOTES, 1975, 17 (5-6) : 450 - 454
  • [3] Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2022, 10 (13)
  • [4] Geodesic Mappings of Spaces with Affine Connnection onto Generalized Ricci Symmetric Spaces
    Berezovski, V. E.
    Mikes, Josef
    Ryparova, Lenka
    [J]. FILOMAT, 2019, 33 (14) : 4475 - 4480
  • [5] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    Berezovskii, V. E.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2021, 110 (1-2) : 293 - 296
  • [6] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    V. E. Berezovskii
    N. I. Guseva
    J. Mikeš
    [J]. Mathematical Notes, 2021, 110 : 293 - 296
  • [7] Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2020, 8 (09)
  • [8] Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Mikes, Josef
    Ryparova, Lenka
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 12
  • [9] CANONICAL ALMOST GEODESIC MAPPINGS OF THE FIRST TYPE OF SPACES WITH AFFINE CONNECTION ONTO GENERALIZED 2-RICCI-SYMMETRIC SPACES
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Leshchenko, Svitlana
    Mikes, Josef
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 78 - 87
  • [10] GEODESIC RICCI MAPPINGS OF 2-SYMMETRIC RIEMANN SPACES
    MIKESH, I
    [J]. MATHEMATICAL NOTES, 1980, 28 (1-2) : 622 - 624