Geodesic Mappings of Spaces with Affine Connnection onto Generalized Ricci Symmetric Spaces

被引:2
|
作者
Berezovski, V. E. [1 ]
Mikes, Josef [2 ]
Ryparova, Lenka [2 ]
机构
[1] Uman Natl Univ Hort, Uman, Ukraine
[2] Palacky Univ, Olomouc, Czech Republic
关键词
geodesic mapping; spaces with affine connnection; generalized Ricci symmetric spaces; fundamental equations;
D O I
10.2298/FIL1914475B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The presented work is devoted to study of the geodesic mappings of spaces with affine connection onto generalized Ricci symmetric spaces. We obtained a fundamental system for this problem in a form of a system of Cauchy type equations in covariant derivatives depending on no more than 1/2n(2)(n + 1) + n real parameters. Analogous results are obtained for geodesic mappings of manifolds with affine connection onto equiaffine generalized Ricci symmetric spaces.
引用
收藏
页码:4475 / 4480
页数:6
相关论文
共 50 条
  • [1] Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2020, 8 (09)
  • [2] Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2022, 10 (13)
  • [3] Geodesic and almost geodesic mappings onto Ricci symmetric spaces
    Berezovskii, V
    Peska, P.
    Mikes, J.
    [J]. MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 43 - 49
  • [4] Canonical Almost Geodesic Mappings of the First Type of Spaces with Affine Connections onto Generalized m-Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Mikes, Josef
    Ryparova, Lenka
    [J]. MATHEMATICS, 2021, 9 (04) : 1 - 12
  • [5] CANONICAL ALMOST GEODESIC MAPPINGS OF THE FIRST TYPE OF SPACES WITH AFFINE CONNECTION ONTO GENERALIZED 2-RICCI-SYMMETRIC SPACES
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Leshchenko, Svitlana
    Mikes, Josef
    [J]. PROCEEDINGS OF THE TWENTY-SECOND INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2021, 22 : 78 - 87
  • [6] Canonical Almost Geodesic Mappings of the First Type onto Generalized Ricci Symmetric Spaces
    Berezovski, Vladimir
    Cherevko, Yevhen
    Hinterleitner, Irena
    Mikes, Josef
    [J]. FILOMAT, 2022, 36 (04) : 1089 - 1097
  • [7] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    Berezovskii, V. E.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2021, 110 (1-2) : 293 - 296
  • [8] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    V. E. Berezovskii
    N. I. Guseva
    J. Mikeš
    [J]. Mathematical Notes, 2021, 110 : 293 - 296
  • [9] On equitorsion geodesic mappings of general affine connection spaces onto generalized Riemannian spaces
    Zlatanovic, Milan Lj.
    [J]. APPLIED MATHEMATICS LETTERS, 2011, 24 (05) : 665 - 671
  • [10] Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces
    Berezovskii, V. E.
    Hinterleitner, I.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2018, 103 (1-2) : 304 - 307