Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces

被引:0
|
作者
V. E. Berezovskii
N. I. Guseva
J. Mikeš
机构
[1] Uman National University of Horticulture,
[2] Moscow State Pedagogical University,undefined
[3] All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences,undefined
[4] Palacký University,undefined
来源
Mathematical Notes | 2021年 / 110卷
关键词
geodesic mapping; Ricci symmetric space; equiaffine space; Cauchy-type system in covariant derivatives;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:293 / 296
页数:3
相关论文
共 50 条
  • [1] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    Berezovskii, V. E.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2021, 110 (1-2) : 293 - 296
  • [2] Geodesic and almost geodesic mappings onto Ricci symmetric spaces
    Berezovskii, V
    Peska, P.
    Mikes, J.
    [J]. MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 43 - 49
  • [3] GEODESIC RICCI MAPPINGS OF 2-SYMMETRIC RIEMANN SPACES
    MIKESH, I
    [J]. MATHEMATICAL NOTES, 1980, 28 (1-2) : 622 - 624
  • [4] Geodesic Mappings of Spaces with Affine Connnection onto Generalized Ricci Symmetric Spaces
    Berezovski, V. E.
    Mikes, Josef
    Ryparova, Lenka
    [J]. FILOMAT, 2019, 33 (14) : 4475 - 4480
  • [5] Geodesic Mappings of Spaces with Affine Connections onto Generalized Symmetric and Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2020, 8 (09)
  • [6] Geodesic Mappings onto Generalized m-Ricci-Symmetric Spaces
    Berezovski, Volodymyr
    Cherevko, Yevhen
    Hinterleitner, Irena
    Peska, Patrik
    [J]. MATHEMATICS, 2022, 10 (13)
  • [7] RICCI GENERALIZED-SYMMETRIC RIEMANNIAN SPACES ALLOW THE NONTRIVIAL GEODESIC MAPPINGS
    SOBCHUK, VS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 267 (04): : 793 - 795
  • [8] Canonical Almost Geodesic Mappings of the First Type onto Generalized Ricci Symmetric Spaces
    Berezovski, Vladimir
    Cherevko, Yevhen
    Hinterleitner, Irena
    Mikes, Josef
    [J]. FILOMAT, 2022, 36 (04) : 1089 - 1097
  • [9] Geodesic mappings of equiaffine and anti-equiaffine general affine connection spaces preserving torsion
    Stankovic, Mica S.
    Ciric, Marija S.
    Zlatanovic, Milan Lj.
    [J]. FILOMAT, 2012, 26 (03) : 439 - 451
  • [10] On geodesic mappings of Riemannian spaces with cyclic Ricci tensor
    Bacso, Sandor
    Tornai, Robert
    Horvath, Zoltan
    [J]. ANNALES MATHEMATICAE ET INFORMATICAE, 2014, 43 : 13 - 17