On geodesic mappings of Riemannian spaces with cyclic Ricci tensor

被引:0
|
作者
Bacso, Sandor [1 ]
Tornai, Robert [1 ]
Horvath, Zoltan [2 ]
机构
[1] Univ Debrecen, Fac Informat, Debrecen, Hungary
[2] Ferenc Rakoczi II Transcarpathian Hungarian Inst, Berehove, Ukraine
来源
关键词
Riemannian spaces; geodesic mapping;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An n-dimensional Riemannian space V-n is called a Riemannian space with cyclic Ricci tensor [2, 3], if the Ricci tensor R-ij satisfies the following condition R-ij,R- k vertical bar R-jk,R- i vertical bar R-ki,R- j = 0, where R-ij the Ricci tensor of V-n, and the symbol "," denotes the covariant derivation with respect to Levi-Civita connection of V-n. In this paper we would like to treat some results in the subject of geodesic mappings of Riemannian space with cyclic Ricci tensor. Let V-n = (M-n, g(ij)) and (V) over bar (n) = (M-n, (g) over bar (ij)) be two Riemannian spaces on the underlying manifold M-n. A mapping V-n -> (V) over bar (n) is called geodesic, if it maps an arbitrary geodesic curve of V-n to a geodesic curve of (V) over bar (n).[4] At first we investigate the geodesic mappings of a Riemannian space with cyclic Ricci tensor into another Riemannian space with cyclic Ricci tensor. Finally we show that, the Riemannian-Einstein space with cyclic Ricci tensor admit only trivial geodesic mapping.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 50 条
  • [1] RICCI GENERALIZED-SYMMETRIC RIEMANNIAN SPACES ALLOW THE NONTRIVIAL GEODESIC MAPPINGS
    SOBCHUK, VS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 267 (04): : 793 - 795
  • [2] NORMAL GEODESIC MAPPINGS OF RIEMANNIAN SPACES
    SINUKOV, NS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1956, 111 (04): : 766 - 767
  • [3] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    Berezovskii, V. E.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2021, 110 (1-2) : 293 - 296
  • [4] Geodesic Mappings of Equiaffine and Ricci Symmetric Spaces
    V. E. Berezovskii
    N. I. Guseva
    J. Mikeš
    [J]. Mathematical Notes, 2021, 110 : 293 - 296
  • [5] Geodesic and almost geodesic mappings onto Ricci symmetric spaces
    Berezovskii, V
    Peska, P.
    Mikes, J.
    [J]. MATHEMATICS, INFORMATION TECHNOLOGIES AND APPLIED SCIENCES 2017, 2017, : 43 - 49
  • [6] On geodesic mappings of equidistant generalized Riemannian spaces
    Ciric, Marija S.
    Zlatanovic, Milan Lj
    Stankovic, Mica S.
    Velimirovic, Ljubica S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (12) : 6648 - 6655
  • [7] GEODESIC MAPPINGS OF CERTAIN SPECIAL RIEMANNIAN SPACES
    SINYUKOVA, EN
    [J]. MATHEMATICAL NOTES, 1981, 30 (5-6) : 946 - 949
  • [8] Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces
    Berezovskii, V. E.
    Hinterleitner, I.
    Guseva, N. I.
    Mikes, J.
    [J]. MATHEMATICAL NOTES, 2018, 103 (1-2) : 304 - 307
  • [9] Conformal Mappings of Riemannian Spaces onto Ricci Symmetric Spaces
    V. E. Berezovskii
    I. Hinterleitner
    N. I. Guseva
    J. Mikeš
    [J]. Mathematical Notes, 2018, 103 : 304 - 307
  • [10] On the problem of geodesic mappings and deformations of generalized Riemannian spaces
    Najdanovic, Marija S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 634 - 645