A Note on Geodesic Vector Fields

被引:4
|
作者
Deshmukh, Sharief [1 ]
Mikes, Josef [2 ]
Bin Turki, Nasser [1 ]
Vilcu, Gabriel-Eduard [3 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[2] Palacky Univ, Dept Algebra & Geometry, 17 Listopadu 12, Olomouc 77146, Czech Republic
[3] Petr Gas Univ Ploiesti, Dept Cybernet Econ Informat Finance & Accountancy, Bd Bucuresti 39, Ploiesti 100680, Romania
关键词
geodesic vector field; concircular vector field; n-sphere; Euclidean space; COMPACT LORENTZIAN MANIFOLDS; SPACE;
D O I
10.3390/math8101663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The concircularity property of vector fields implies the geodesicity property, while the converse of this statement is not true. The main objective of this note is to find conditions under which the concircularity and geodesicity properties of vector fields are equivalent. Moreover, it is shown that the geodesicity property of vector fields is also useful in characterizing not only spheres, but also Euclidean spaces.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Geodesic Vector Fields on a Riemannian Manifold
    Deshmukh, Sharief
    Peska, Patrik
    Bin Turki, Nasser
    [J]. MATHEMATICS, 2020, 8 (01)
  • [2] A Note on Solitons with Generalized Geodesic Vector Field
    Blaga, Adara M.
    Ishan, Amira
    Deshmukh, Sharief
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [3] A totally geodesic property of Hopf vector fields
    Yampolsky, A
    [J]. ACTA MATHEMATICA HUNGARICA, 2003, 101 (1-2) : 93 - 112
  • [4] A totally geodesic property of Hopf vector fields
    A. Yampolsky
    [J]. Acta Mathematica Hungarica, 2003, 101 : 93 - 112
  • [5] Geodesic Mappings of Spaces with φ(Ric) Vector Fields
    Vashpanov, Y.
    Olshevska, O.
    Lesechko, O.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [6] A note on closed vector fields
    Bin Turki, Nasser
    Deshmukh, Sharief
    Belova, Olga
    [J]. AIMS MATHEMATICS, 2024, 9 (01): : 1509 - 1522
  • [7] A Note on Incompressible Vector Fields
    Bin Turki, Nasser
    [J]. SYMMETRY-BASEL, 2023, 15 (08):
  • [8] A note on closed vector fields
    Bin Turki, Nasser
    Deshmukh, Sharief
    Belova, Olga
    [J]. AIMS MATHEMATICS, 2023, 9 (01): : 1509 - 1522
  • [9] A NOTE ON EQUIVARIANT VECTOR FIELDS
    姜伯驹
    [J]. Acta Mathematica Scientia, 1991, (03) : 274 - 282
  • [10] Vector fields dynamics as geodesic motion on Lie groups
    Pripoae, GT
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (11) : 865 - 868