Conformal vector fields on pseudo-Riemannian spaces

被引:57
|
作者
Kuhnel, W
Rademacher, HB
机构
[1] UNIV LEIPZIG,INST MATH,D-04109 LEIPZIG,GERMANY
[2] UNIV STUTTGART,INST MATH B,D-70550 STUTTGART,GERMANY
关键词
warped product; conformal gradient field; Einstein spaces; constant scalar curvature;
D O I
10.1016/S0926-2245(96)00052-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conformal Vector fields on pseudo-Riemannian manifolds, in particular on Einstein spaces and on spaces of constant scalar curvature. A global classification theorem for conformal vector fields is obtained which are locally gradient fields. This includes the case of a positive metric as well as the case of an indefinite metric.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [1] Spaces of conformal vector fields on Pseudo-Riemannian manifolds
    Kim, DS
    Kim, YH
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 471 - 484
  • [2] CONFORMAL TRANSFORMATIONS OF PSEUDO-RIEMANNIAN SYMMETRICAL SPACES
    CAHEN, M
    KERBRAT, Y
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (05): : 383 - 385
  • [3] ESSENTIAL CONFORMAL FIELDS IN PSEUDO-RIEMANNIAN GEOMETRY
    KUHNEL, W
    RADEMACHER, HB
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1995, 74 (05): : 453 - 481
  • [4] ON THE BIHARMONICITY OF VECTOR FIELDS ON PSEUDO-RIEMANNIAN MANIFOLDS
    Alem, Amina
    Kacimi, Bouazza
    Ozkan, Mustafa
    [J]. HONAM MATHEMATICAL JOURNAL, 2023, 45 (02): : 300 - 315
  • [5] Biharmonic vector fields on pseudo-Riemannian manifolds
    Markellos, M.
    Urakawa, H.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 130 : 293 - 314
  • [6] Harmonic vector fields on pseudo-Riemannian manifolds
    Friswell, R. M.
    Wood, C. M.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 112 : 45 - 58
  • [7] Pseudo-Riemannian Lie groups admitting left-invariant conformal vector fields
    Zhang, Hui
    Chen, Zhiqi
    [J]. COMPTES RENDUS MATHEMATIQUE, 2020, 358 (02) : 143 - 149
  • [8] POLES OF PSEUDO-RIEMANNIAN SPACES
    SOLODOVNIKOV, AS
    KAMYSHANSKII, NR
    [J]. DOKLADY AKADEMII NAUK SSSR, 1975, 222 (01): : 47 - 50
  • [9] Pseudo-Riemannian VSI spaces
    Hervik, Sigbjorn
    Coley, Alan
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (01)
  • [10] TOWARD A CLASSIFICATION OF KILLING VECTOR FIELDS OF CONSTANT LENGTH ON PSEUDO-RIEMANNIAN NORMAL HOMOGENEOUS SPACES
    Wolf, Joseph A.
    Podesta, Fabio
    Xu, Ming
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 105 (03) : 519 - 532