Pseudo-Riemannian VSI spaces

被引:10
|
作者
Hervik, Sigbjorn [1 ]
Coley, Alan [2 ]
机构
[1] Univ Stavanger, Fac Sci & Technol, N-4036 Stavanger, Norway
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HIGHER DIMENSIONS; SPACETIMES; INVARIANTS;
D O I
10.1088/0264-9381/28/1/015008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S-i- and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Pseudo-Riemannian VSI spaces II
    Hervik, Sigbjorn
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (09)
  • [2] POLES OF PSEUDO-RIEMANNIAN SPACES
    SOLODOVNIKOV, AS
    KAMYSHANSKII, NR
    [J]. DOKLADY AKADEMII NAUK SSSR, 1975, 222 (01): : 47 - 50
  • [3] Isotropic submanifolds of pseudo-Riemannian spaces
    Cabrerizo, J. L.
    Fernandez, M.
    Gomez, J. S.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (09) : 1915 - 1924
  • [4] On the structure of pseudo-Riemannian symmetric spaces
    I. Kath
    M. Olbrich
    [J]. Transformation Groups, 2009, 14 : 847 - 885
  • [5] PSEUDO-RIEMANNIAN SYMMETRIC-SPACES
    CAHEN, M
    PARKER, M
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 24 (229) : 1 - 108
  • [6] ON THE ALGEBRAIC CLASSIFICATION OF PSEUDO-RIEMANNIAN SPACES
    Hervik, Sigbjorn
    Coley, Alan
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (08) : 1679 - 1685
  • [7] PSEUDO-RIEMANNIAN ANALYTIC SPACES WITH POLES
    SOLODOVN.AS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1973, 212 (01): : 53 - 56
  • [8] ON THE STRUCTURE OF PSEUDO-RIEMANNIAN SYMMETRIC SPACES
    Kath, I.
    Olbrich, M.
    [J]. TRANSFORMATION GROUPS, 2009, 14 (04) : 847 - 885
  • [9] RECURRENCY OF A CLASS OF PSEUDO-RIEMANNIAN SPACES
    COLLINSON, CD
    SOLER, F
    [J]. TENSOR, 1976, 30 (01): : 87 - 88
  • [10] Canonical Deformations of Pseudo-Riemannian Spaces
    Vashpanova, N.
    Podousova, T.
    Fedchenko, Ju
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2019, 2164