Conformal vector fields on pseudo-Riemannian spaces

被引:57
|
作者
Kuhnel, W
Rademacher, HB
机构
[1] UNIV LEIPZIG,INST MATH,D-04109 LEIPZIG,GERMANY
[2] UNIV STUTTGART,INST MATH B,D-70550 STUTTGART,GERMANY
关键词
warped product; conformal gradient field; Einstein spaces; constant scalar curvature;
D O I
10.1016/S0926-2245(96)00052-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study conformal Vector fields on pseudo-Riemannian manifolds, in particular on Einstein spaces and on spaces of constant scalar curvature. A global classification theorem for conformal vector fields is obtained which are locally gradient fields. This includes the case of a positive metric as well as the case of an indefinite metric.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条