Directed path spaces via discrete vector fields

被引:0
|
作者
Krzysztof Ziemiański
机构
[1] University of Warsaw,Faculty of Mathematics, Informatics and Mechanics
关键词
Semi-cubical set; Directed path space; Discrete vector field; Permutahedron; Configuration space;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be an arbitrary semi-cubical set that can be embedded in a standard cube. Using Discrete Morse Theory, we construct a CW-complex that is homotopy equivalent to the space P→(K)vw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {P}(K)_v^w$$\end{document} of directed paths between two given vertices v, w of K. In many cases, this construction is minimal: the cells of the constructed CW-complex are in 1–1 correspondence with the generators of the homology of P→(K)vw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {P}(K)_v^w$$\end{document}.
引用
收藏
页码:51 / 74
页数:23
相关论文
共 50 条