Quasi-quintic trigonometric Bézier curves with two shape parameters

被引:5
|
作者
Xuewen Tan
Yuanpeng Zhu
机构
[1] South China University of Technology,School of Business Administration
[2] South China University of Technology,Department of Mathematics
来源
关键词
Trigonometric blending functions; Trigonometric Bézier curves; Shape parameters; Smoothness; 65D07; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a family of six new quasi-quintic trigonometric blending functions with two shape parameters. Based on these blending functions, a class of quasi-quintic trigonometric Bézier curve is proposed, which has some properties analogous to the classical quintic Bézier curves. For the same control points, the resulting quasi-quintic trigonometric Bézier curves can be closer to the control polygon than the classical quintic Bézier curves. The shape of the quasi-quintic trigonometric Bézier curves can be flexibly adjusted by altering the values of the two shape parameters without changing their control points. Under the C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2}$$\end{document} smooth connection conditions, the resulting composite quasi-quintic trigonometric Bézier curves can automatically reach C2∩FC3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2} \cap F{C^3}$$\end{document} continuity.
引用
收藏
相关论文
共 50 条
  • [41] Shape-Adjustable Generalized Bézier Rotation Surfaces with Multiple Shape Parameters
    Gang Hu
    Guo Wei
    Junli Wu
    Results in Mathematics, 2017, 72 : 1281 - 1313
  • [42] Study on a class of TC-Bézier curve with shape parameters
    Liu, Huayong
    Li, Lu
    Zhang, Daming
    Journal of Information and Computational Science, 2011, 8 (07): : 1217 - 1223
  • [43] Quickly construction of quartic λ-Bézier rotation surfaces with shape parameters
    Hu, Gang
    Ji, Xiaomin
    Qin, Xinqiang
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2014, 45 (04): : 304 - 309
  • [44] A Class of Sextic Trigonometric Bezier Curve with Two Shape Parameters
    Naseer, Salma
    Abbas, Muhammad
    Emadifar, Homan
    Bi, Samia Bi
    Nazir, Tahir
    Shah, Zaheer Hussain
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [45] Two Kinds of B-Spline-Type Trigonometric Curves
    Yan, Lanlan
    Liang, Jiongfeng
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND NATURAL COMPUTING, VOL I, 2009, : 405 - +
  • [46] The Approximation of Generalized Log-Aesthetic Curves with G2 Cubic Trigonometric Bézier Function
    Albayari, Diya' J.
    Gobithaasan, R. U.
    Miura, Kenjiro T.
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [47] MODELING CURVES BY A QUADRATIC TRIGONOMETRIC B-SPLINE WITH POINT SHAPE CONTROL
    Sarfraz, M.
    Samreen, S.
    Hussain, M. Z.
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL I, 2018, : 340 - 342
  • [48] SHAPE PRESERVING PROPERTIES OF (p, q) BERNSTEIN B?ZIER CURVES AND CORRESPONDING RESULTS OVER [a, b]
    Sharma, Vinita
    Khan, Asif
    Mursaleen, Mohammad
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2023, 6 (04): : 691 - 703
  • [49] Constrained modification of the cubic trigonometric Bezier curve with two shape parameters
    Troll, Ede
    ANNALES MATHEMATICAE ET INFORMATICAE, 2014, 43 : 145 - 156
  • [50] The study of coincidence or partial coincidence condition for two rational cubic Bézier curves
    Chen, Xiaodiao
    Duan, Xiaohui
    Yang, Chao
    Wang, Yigang
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (09): : 1648 - 1652