Quasi-quintic trigonometric Bézier curves with two shape parameters

被引:5
|
作者
Xuewen Tan
Yuanpeng Zhu
机构
[1] South China University of Technology,School of Business Administration
[2] South China University of Technology,Department of Mathematics
来源
关键词
Trigonometric blending functions; Trigonometric Bézier curves; Shape parameters; Smoothness; 65D07; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a family of six new quasi-quintic trigonometric blending functions with two shape parameters. Based on these blending functions, a class of quasi-quintic trigonometric Bézier curve is proposed, which has some properties analogous to the classical quintic Bézier curves. For the same control points, the resulting quasi-quintic trigonometric Bézier curves can be closer to the control polygon than the classical quintic Bézier curves. The shape of the quasi-quintic trigonometric Bézier curves can be flexibly adjusted by altering the values of the two shape parameters without changing their control points. Under the C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2}$$\end{document} smooth connection conditions, the resulting composite quasi-quintic trigonometric Bézier curves can automatically reach C2∩FC3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2} \cap F{C^3}$$\end{document} continuity.
引用
收藏
相关论文
共 50 条
  • [31] Quasi-aesthetic curves in rational cubic Bézier forms
    Nihon University
    不详
    Comput.-Aided Des. Appl., 2007, 1-6 (477-486):
  • [33] Shape-adjustable developable generalized blended trigonometric Bézier surfaces and their applications
    Sidra Maqsood
    Muhammad Abbas
    Kenjiro T. Miura
    Abdul Majeed
    Gang Hu
    Tahir Nazir
    Advances in Difference Equations, 2021
  • [34] Shape preserving interpolation of positive and range-restricted data using quintic trigonometric Bezier curves
    Mahzir, Salwa Syazwani
    Misro, Md Yushalify
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 80 : 122 - 133
  • [35] Equivalence Conditions of Two Bézier Curves in the Euclidean Geometry
    İdris Ören
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1563 - 1577
  • [36] Caputo Fabrizio Bézier Curve with Fractional and Shape Parameters
    Awais, Muhammad
    Kirmani, Syed Khawar Nadeem
    Rana, Maheen
    Ahmad, Raheel
    COMPUTERS, 2024, 13 (08)
  • [37] Equivalence Conditions of Two B,zier Curves in the Euclidean Geometry
    Oren, Idris
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1563 - 1577
  • [38] The cubic trigonometric Bezier curve with two shape parameters
    Han, Xi-An
    Ma, YiChen
    Huang, XiLi
    APPLIED MATHEMATICS LETTERS, 2009, 22 (02) : 226 - 231
  • [40] Geometric modeling and applications of generalized blended trigonometric Bezier curves with shape parameters
    Maqsood, Sidra
    Abbas, Muhammad
    Miura, Kenjiro T.
    Majeed, Abdul
    Iqbal, Azhar
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)