Quasi-quintic trigonometric Bézier curves with two shape parameters

被引:5
|
作者
Xuewen Tan
Yuanpeng Zhu
机构
[1] South China University of Technology,School of Business Administration
[2] South China University of Technology,Department of Mathematics
来源
关键词
Trigonometric blending functions; Trigonometric Bézier curves; Shape parameters; Smoothness; 65D07; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a family of six new quasi-quintic trigonometric blending functions with two shape parameters. Based on these blending functions, a class of quasi-quintic trigonometric Bézier curve is proposed, which has some properties analogous to the classical quintic Bézier curves. For the same control points, the resulting quasi-quintic trigonometric Bézier curves can be closer to the control polygon than the classical quintic Bézier curves. The shape of the quasi-quintic trigonometric Bézier curves can be flexibly adjusted by altering the values of the two shape parameters without changing their control points. Under the C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2}$$\end{document} smooth connection conditions, the resulting composite quasi-quintic trigonometric Bézier curves can automatically reach C2∩FC3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2} \cap F{C^3}$$\end{document} continuity.
引用
收藏
相关论文
共 50 条
  • [21] New generalized blended trigonometric Be<acute accent>zier curves with one shape parameter
    Kaur, Harmanjit
    Goyal, Meenu Rani
    FILOMAT, 2024, 38 (02) : 705 - 725
  • [22] Quadratic trigonometric spline curves with multiple shape parameters
    Wu, Xiaoqin
    Han, Xuli
    Luo, Shanmin
    PROCEEDINGS OF 2007 10TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN AND COMPUTER GRAPHICS, 2007, : 413 - +
  • [23] A class of quasi Bézier curves based on hyperbolic polynomials
    沈莞蔷
    汪国昭
    Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2005, (S1) : 116 - 123
  • [24] Class of quasi Bézier curves based on hyperbolic polynomials
    Shen W.-Q.
    Wang G.-Z.
    Journal of Zhejiang University-SCIENCE A, 2005, 6 (Suppl 1): : 116 - 123
  • [25] Two Kinds of Trigonometric Spline Curves with Shape Parameter
    Yan, LanLan
    Liang, JiongFeng
    Wu, GuoGen
    2009 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY,VOL I, PROCEEDINGS, 2009, : 549 - +
  • [26] A Shape Preserving Class of Two-Frequency Trigonometric B-Spline Curves
    Albrecht, Gudrun
    Mainar, Esmeralda
    Manuel Pena, Juan
    Rubio, Beatriz
    SYMMETRY-BASEL, 2023, 15 (11):
  • [27] Shape modification of cubic Quasi-Bézier curve
    School of Sciences, Xi'an Jiaotong University, Xi'an 710049, China
    不详
    不详
    Hsi An Chiao Tung Ta Hsueh, 2007, 8 (903-906): : 903 - 906
  • [28] Path planning algorithm for mobile robots based on clustering-obstacles and quintic trigonometric Bézier curve
    Vahide Bulut
    Annals of Mathematics and Artificial Intelligence, 2024, 92 : 235 - 256
  • [29] Quasi-log-aesthetic curves in polynomial Bézier form
    Yoshida, Norimasa
    Fukuda, Ryo
    Saito, Toshio
    Saito, Takafumi
    Computer-Aided Design and Applications, 2013, 10 (06): : 983 - 993
  • [30] Quasi-Bezier Curves with Shape Parameters
    Chen, Jun
    JOURNAL OF APPLIED MATHEMATICS, 2013,