Quasi-quintic trigonometric Bézier curves with two shape parameters

被引:5
|
作者
Xuewen Tan
Yuanpeng Zhu
机构
[1] South China University of Technology,School of Business Administration
[2] South China University of Technology,Department of Mathematics
来源
关键词
Trigonometric blending functions; Trigonometric Bézier curves; Shape parameters; Smoothness; 65D07; 65D17;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we propose a family of six new quasi-quintic trigonometric blending functions with two shape parameters. Based on these blending functions, a class of quasi-quintic trigonometric Bézier curve is proposed, which has some properties analogous to the classical quintic Bézier curves. For the same control points, the resulting quasi-quintic trigonometric Bézier curves can be closer to the control polygon than the classical quintic Bézier curves. The shape of the quasi-quintic trigonometric Bézier curves can be flexibly adjusted by altering the values of the two shape parameters without changing their control points. Under the C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2}$$\end{document} smooth connection conditions, the resulting composite quasi-quintic trigonometric Bézier curves can automatically reach C2∩FC3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^2} \cap F{C^3}$$\end{document} continuity.
引用
收藏
相关论文
共 50 条
  • [1] Quasi-quintic trigonometric Bezier curves with two shape parameters
    Tan, Xuewen
    Zhu, Yuanpeng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [2] A class of quasi-quintic trigonometric Bezier curve with two shape parameters
    Bashir, Uzma
    Abbas, Muhammad
    Awang, Mohd Nain Hj
    Ali, Jamaludin Md.
    SCIENCEASIA, 2013, 39 : 11 - 15
  • [3] Shape analysis of quadratic trigonometric bézier curves
    Wu, Xiaoqin
    Chen, Fulai
    Zhu, Xiuyun
    Journal of Information and Computational Science, 2012, 9 (04): : 821 - 829
  • [4] Rational cubic trigonometric Bézier curve with two shape parameters
    Uzma Bashir
    Jamaludin Md. Ali
    Computational and Applied Mathematics, 2016, 35 : 285 - 300
  • [5] Rational cubic trigonometric B,zier curve with two shape parameters
    Bashir, Uzma
    Ali, Jamaludin Md.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (01): : 285 - 300
  • [6] Quartic trigonometric Bézier curves and shape preserving interpolation curves
    School of Mathematical Sciences and Computing Technology, Central South University, Changsha 410083, China
    J. Comput. Inf. Syst., 1600, 2 (905-914):
  • [7] Geometric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters
    Sidra Maqsood
    Muhammad Abbas
    Kenjiro T. Miura
    Abdul Majeed
    Azhar Iqbal
    Advances in Difference Equations, 2020
  • [8] Quintic Trigonometric Bezier Curve with Two Shape Parameters
    Misro, M. Y.
    Ramli, A.
    Ali, J. M.
    SAINS MALAYSIANA, 2017, 46 (05): : 825 - 831
  • [9] Path planning for autonomous ground vehicles based on quintic trigonometric Bézier curvePath planning based on quintic trigonometric Bézier curve
    Vahide Bulut
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43
  • [10] Construction of Generalized Hybrid Trigonometric Bézier Surfaces with Shape Parameters and Their Applications
    Samia Bibi
    Muhammad Abbas
    Md Yushalify Misro
    Abdul Majeed
    Tahir Nazir
    Journal of Mathematical Imaging and Vision, 2021, 63 : 1118 - 1142