The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation

被引:0
|
作者
Daniel Pipilas
Samuel Freesun Friedman
Shaan Khurshid
机构
[1] Massachusetts General Hospital,Cardiovascular Research Center
[2] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Cardiovascular Disease Initiative
[3] Massachusetts General Hospital,Division of Cardiology
[4] Massachusetts General Hospital,Demoulas Center for Cardiac Arrhythmias
[5] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Data Sciences Platform
来源
关键词
Atrial fibrillation; Artificial intelligence; Machine learning; Risk prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:381 / 389
页数:8
相关论文
共 50 条
  • [41] Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
    Wu, Cai
    Hwang, Maxwell
    Huang, Tian-Hsiang
    Chen, Yen-Ming J.
    Chang, Yiu-Jen
    Ho, Tsung-Han
    Huang, Jian
    Hwang, Kao-Shing
    Ho, Wen-Hsien
    [J]. BMC BIOINFORMATICS, 2021, 22 (SUPPL 5)
  • [42] Chronic obstructive pulmonary disease characteristics to predict development of atrial fibrillation and outcomes in atrial fibrillation adult patients
    Zeid, Awad
    Ashmawy, Rasha
    Mohamed, Nancy
    Sharaf, Sandy
    [J]. EUROPEAN HEART JOURNAL SUPPLEMENTS, 2019, 21 (0H) : H2 - H2
  • [43] Use of automated artificial intelligence to predict the need for orthodontic extractions
    Del Real, Alberto
    Del Real, Octavio
    Sardina, Sebastian
    Oyonarte, Rodrigo
    [J]. KOREAN JOURNAL OF ORTHODONTICS, 2022, 52 (02) : 102 - 111
  • [44] Artificial intelligence-enabled electrocardiogram (AI-ECG) does not predict atrial fibrillation following patent foramen ovale closure
    Baqal, Omar
    Habib, Eiad A.
    Hasabo, Elfatih A.
    Galasso, Francesca
    Barry, Timothy
    Arsanjani, Reza
    Sweeney, John P.
    Noseworthy, Peter
    Fortuin, F. David
    [J]. IJC HEART & VASCULATURE, 2024, 51
  • [45] Artificial intelligence to predict soil temperatures by development of novel model
    Mampitiya, Lakindu
    Rozumbetov, Kenjabek
    Rathnayake, Namal
    Erkudov, Valery
    Esimbetov, Adilbay
    Arachchi, Shanika
    Kantamaneni, Komali
    Hoshino, Yukinobu
    Rathnayake, Upaka
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [46] CAN ARTIFICIAL INTELLIGENCE PREDICT THE DEVELOPMENT OF ABDOMINAL PAIN IN CHILDREN?
    Takahashi, Kazuya
    Ruffle, James K.
    Terai, Shuji
    Satti, Humayoon
    Aziz, Qasim
    [J]. GASTROENTEROLOGY, 2022, 162 (07) : S125 - S125
  • [47] Wearable Devices Combined with Artificial Intelligence-A Future Technology for Atrial Fibrillation Detection?
    Makynen, Marko
    Ng, G. Andre
    Li, Xin
    Schlindwein, Fernando S.
    [J]. SENSORS, 2022, 22 (22)
  • [48] ARTIFICIAL INTELLIGENCE-ENABLED PREDICTION OF ATRIAL FIBRILLATION EVENTS USING MOBILE ELECTROCARDIOGRAMS
    Nguyen, Dan
    Raghunath, Ananditha
    Schram, Matthew
    Albert, Dave
    Gollakota, Shyamnath
    Shapiro, Linda
    Raghav, Arun
    Sridhar, Mahankali
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 2054 - 2054
  • [49] Artificial Intelligence-Guided Screening for Atrial Fibrillation Using the Electrocardiogram in Sinus Rhythm
    Noseworthy, Peter A.
    Attia, Zachi I.
    Behnken, Emma M.
    Giblon, Rachel E.
    Liu, Sijia
    Gosse, Tara
    Linn, Zachery D.
    Deng, Yihong
    Yin, Jun
    Gersh, Bernard J.
    Graff-Radford, Jonathan
    Rabinstein, Alejandro A.
    Siontis, Konstantinos
    Friedman, Paul
    Yao, Xiaoxi
    [J]. CIRCULATION, 2022, 146
  • [50] Artificial Intelligence Application in Graves Disease: Atrial Fibrillation, Heart Failure and Menstrual Changes
    Naser, Jwan A.
    Attia, Zachi, I
    Pislaru, Sorin, V
    Stan, Marius N.
    Pellikka, Patricia A.
    Noseworthy, Peter A.
    Friedman, Paul A.
    Lin, Grace
    [J]. MAYO CLINIC PROCEEDINGS, 2022, 97 (04) : 730 - 737