The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation

被引:0
|
作者
Daniel Pipilas
Samuel Freesun Friedman
Shaan Khurshid
机构
[1] Massachusetts General Hospital,Cardiovascular Research Center
[2] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Cardiovascular Disease Initiative
[3] Massachusetts General Hospital,Division of Cardiology
[4] Massachusetts General Hospital,Demoulas Center for Cardiac Arrhythmias
[5] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Data Sciences Platform
来源
关键词
Atrial fibrillation; Artificial intelligence; Machine learning; Risk prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:381 / 389
页数:8
相关论文
共 50 条
  • [31] Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
    Cai Wu
    Maxwell Hwang
    Tian-Hsiang Huang
    Yen-Ming J. Chen
    Yiu-Jen Chang
    Tsung-Han Ho
    Jian Huang
    Kao-Shing Hwang
    Wen-Hsien Ho
    [J]. BMC Bioinformatics, 22
  • [32] A new smart wristband equipped with an artificial intelligence algorithm to detect atrial fibrillation
    Chen, Erdong
    Jiang, Jie
    Su, Rui
    Gao, Meng
    Zhu, Sainan
    Zhou, Jing
    Huo, Yong
    [J]. HEART RHYTHM, 2020, 17 (05) : 847 - 853
  • [33] Assessment of the atrial fibrillation burden in Holter electrocardiogram recordings using artificial intelligence
    Hennings, Elisa
    Coslovsky, Michael
    Paladini, Rebecca E.
    Aeschbacher, Stefanie
    Knecht, Sven
    Schlageter, Vincent
    Krisai, Philipp
    Badertscher, Patrick
    Sticherling, Christian
    Osswald, Stefan
    Kuhne, Michael
    Zuern, Christine S.
    [J]. CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (02): : 41 - 47
  • [34] Assessment of the Atrial Fibrillation Burden in Holter ECG Recordings using Artificial Intelligence
    Hennings, Elisa
    Coslovsky, Michael
    Paladini, Rebecca E.
    Aeschbacher, Stefanie
    Knecht, Sven
    Schlageter, Vincent
    Krisai, Philipp
    Badertscher, Patrick
    Sticherling, Christian
    Osswald, Stefan
    Kuhne, Michael
    Zuern, Christine S.
    [J]. SWISS MEDICAL WEEKLY, 2023, 153 : 80S - 80S
  • [35] Application of artificial intelligence ensemble learning model in early prediction of atrial fibrillation
    Wu, Cai
    Hwang, Maxwell
    Huang, Tian-Hsiang
    Chen, Yen-Ming J.
    Chang, Yiu-Jen
    Ho, Tsung-Han
    Huang, Jian
    Hwang, Kao-Shing
    Ho, Wen-Hsien
    [J]. BMC BIOINFORMATICS, 2021, 22 (SUPPL 5)
  • [36] ARTIFICIAL INTELLIGENCE HELPS IDENTIFY PATIENTS WITH GRAVES' DISEASE AT RISK FOR ATRIAL FIBRILLATION
    Naser, Jwan
    Attia, Zachi Itzhak
    Pislaru, Sorin
    Stan, Marius N.
    Noseworthy, Peter
    Friedman, Paul
    Lin, Grace
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 319 - 319
  • [37] The Integration of Artificial Intelligence Into Patient Care: A Case of Atrial Fibrillation Caught by a Smartwatch
    Bedi, Angad
    Masri, Mohammad Khaldoun Al
    Al Hennawi, Hussam
    Qadir, Shayan
    Ottman, Patrick
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (03)
  • [38] Evaluating atrial fibrillation artificial intelligence for the emergency department, statistical and clinical implications
    Kaminski, Ann E.
    Albus, Michael L.
    Ball, Colleen T.
    White, Launia J.
    Sheele, Johnathan M.
    Attia, Zachi I.
    Friedman, Paul A.
    Adedinsewo, Demilade A.
    Noseworthy, Peter A.
    [J]. AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2022, 57 : 98 - 102
  • [39] Leveraging Artificial Intelligence in Cardiology: Interaction Between Atrial Fibrillation and Cardiopulmonary Dynamics
    Chaudhary, Rahul
    Harinstein, Matthew E.
    [J]. AMERICAN JOURNAL OF CARDIOLOGY, 2023, 205 : 497 - 498
  • [40] Artificial intelligence-based detection of atrial fibrillation from chest radiographs
    Toshimasa Matsumoto
    Shoichi Ehara
    Shannon L. Walston
    Yasuhito Mitsuyama
    Yukio Miki
    Daiju Ueda
    [J]. European Radiology, 2022, 32 : 5890 - 5897