The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation

被引:0
|
作者
Daniel Pipilas
Samuel Freesun Friedman
Shaan Khurshid
机构
[1] Massachusetts General Hospital,Cardiovascular Research Center
[2] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Cardiovascular Disease Initiative
[3] Massachusetts General Hospital,Division of Cardiology
[4] Massachusetts General Hospital,Demoulas Center for Cardiac Arrhythmias
[5] Broad Institute of Harvard University and the Massachusetts Institute of Technology,Data Sciences Platform
来源
关键词
Atrial fibrillation; Artificial intelligence; Machine learning; Risk prediction;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:381 / 389
页数:8
相关论文
共 50 条
  • [21] Use of artificial intelligence and I-Score for prediction of recurrence before catheter ablation of atrial fibrillation
    Liu, Chih-Min
    Chen, Wei-Shiang
    Chang, Shih-Lin
    Hsieh, Yu-Cheng
    Hsu, Yuan-Heng
    Chang, Hao-Xiang
    Lin, Yenn-Jiang
    Lo, Li-Wei
    Hu, Yu-Feng
    Chung, Fa-Po
    Chao, Tze-Fan
    Tuan, Ta-Chuan
    Liao, Jo-Nan
    Lin, Chin-Yu
    Chang, Ting-Yung
    Kuo, Ling
    Wu, Cheng -, I
    Wu, Mei-Han
    Chen, Chun-Ku
    Chang, Ying-Yueh
    Shiu, Yang -Che
    Lu, Henry Horng-Shing
    Chen, Shih-Ann
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 402
  • [22] Development of a Score to Predict the Paroxysmal Atrial Fibrillation in Stroke Patients: The Screening for Atrial Fibrillation Scale
    Pascasio, Laura Amaya
    Lopez, Miguel Quesada
    Garcia-Torrecillas, Juan Manuel
    Arjona-Padillo, Antonio
    Sanchez, Patricia Martinez
    [J]. FRONTIERS IN NEUROLOGY, 2022, 13
  • [23] Prediction of Atrial Fibrillation using artificial intelligence on Electrocardiograms: A systematic review
    Matias, Igor
    Garcia, Nuno
    Pirbhulal, Sandeep
    Felizardo, Virginie
    Pombo, Nuno
    Zacarias, Henriques
    Sousa, Miguel
    Zdravevski, Eftim
    [J]. COMPUTER SCIENCE REVIEW, 2021, 39
  • [24] The Application of Artificial Intelligence in Atrial Fibrillation Patients: From Detection to Treatment
    Liang, Hanyang
    Zhang, Han
    Wang, Juan
    Shao, Xinghui
    Wu, Shuang
    Lyu, Siqi
    Xu, Wei
    Wang, Lulu
    Tan, Jiangshan
    Wang, Jingyang
    Yang, Yanmin
    [J]. REVIEWS IN CARDIOVASCULAR MEDICINE, 2024, 25 (07)
  • [25] Artificial Intelligence Across the Continuum of Atrial Fibrillation Screening, Diagnosis, and Treatment
    Yao, Xiaoxi
    Noseworthy, Peter A.
    [J]. CURRENT CARDIOVASCULAR RISK REPORTS, 2024,
  • [26] Artificial intelligence and atrial fibrillation: A bibliometric analysis from 2013 to 2023
    Jia, Bochao
    Chen, Jiafan
    Luan, Yujie
    Wang, Huan
    Wei, Yi
    Hu, Yuanhui
    [J]. HELIYON, 2024, 10 (15)
  • [27] Use of artificial intelligence to predict survival in pulmonary hypertension
    Dawes, Timothy
    de Marvao, Antonio
    Shi, Wenzhe
    Fletcher, Tristan
    Watson, Geoffrey
    Wharton, John
    Rhodes, Christopher
    Howard, Luke
    Gibbs, Simon
    Rueckert, Daniel
    Cook, Stuart
    Wilkins, Martin
    O'Regan, Declan
    [J]. LANCET, 2016, 387 : 35 - 35
  • [28] Use of Artificial Intelligence in Drug Development
    Druedahl, Louise C.
    Price II, W. Nicholson
    Minssen, Timo
    Sarpatwari, Ameet
    [J]. JAMA NETWORK OPEN, 2024, 7 (05)
  • [29] CAN A GENETIC TEST PREDICT THE DEVELOPMENT OF POSTOPERATIVE ATRIAL FIBRILLATION
    Sodhi, Gurpreet
    Shah, Amit
    Shea, Jennifer
    Najam, Farzad
    Solomon, Allen J.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2011, 57 (14) : E1358 - E1358
  • [30] Artificial intelligence-based detection of atrial fibrillation from chest radiographs
    Matsumoto, Toshimasa
    Ehara, Shoichi
    Walston, Shannon L.
    Mitsuyama, Yasuhito
    Miki, Yukio
    Ueda, Daiju
    [J]. EUROPEAN RADIOLOGY, 2022, 32 (09) : 5890 - 5897