Positivity and Completeness of Invariant Metrics

被引:0
|
作者
Taeyong Ahn
Hervé Gaussier
Kang-Tae Kim
机构
[1] POSTECH,Center for Geometry and its Applications
[2] Univ. Grenoble Alpes,Center for Geometry and its Applications and Department of Mathematics
[3] IF,undefined
[4] CNRS,undefined
[5] IF,undefined
[6] POSTECH,undefined
来源
关键词
Holomorphic peak functions; Invariant metrics; Unbounded domains; 32A40; 32F45; 32T40;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for constructing global holomorphic peak functions from local holomorphic support functions for broad classes of unbounded domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}. As an application, we establish a method for showing the positivity and completeness of invariant metrics including the Bergman metric mainly for the unbounded domains.
引用
收藏
页码:1173 / 1185
页数:12
相关论文
共 50 条
  • [21] A condition for the positivity of the density of an invariant measure
    B. V. Agafontsev
    V. I. Bogachev
    S. V. Shaposhnikov
    Doklady Mathematics, 2011, 83 : 332 - 336
  • [22] A Condition for the Positivity of the Density of an Invariant Measure
    Agafontsev, B. V.
    Bogachev, V. I.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 332 - 336
  • [23] COMPLETENESS PROPERTIES OF SOBOLEV METRICS ON THE SPACE OF CURVES
    Bruveris, Martins
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (02): : 125 - 150
  • [24] Invariant (α, β)-metrics on homogeneous manifolds
    An, Huihui
    Deng, Shaoqiang
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (02): : 89 - 102
  • [25] Invariant metrics on finite groups
    Podesta, Ricardo A.
    Vides, Maximiliano G.
    DISCRETE MATHEMATICS, 2023, 346 (01)
  • [26] Invariant (α, β)-metrics on homogeneous manifolds
    Huihui An
    Shaoqiang Deng
    Monatshefte für Mathematik, 2008, 154
  • [27] On Isometries of Conformally Invariant Metrics
    Klen, Riku
    Vuorinen, Matti
    Zhang, Xiaohui
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (02) : 914 - 923
  • [28] Invariant metrics on the symmetrized bidisc
    Trybula, Maria
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (04) : 559 - 565
  • [29] On Isometries of Conformally Invariant Metrics
    Riku Klén
    Matti Vuorinen
    Xiaohui Zhang
    The Journal of Geometric Analysis, 2016, 26 : 914 - 923
  • [30] Invariant Metrics on the Complex Ellipsoid
    Gunhee Cho
    The Journal of Geometric Analysis, 2021, 31 : 2088 - 2104