Invariant Metrics on the Complex Ellipsoid

被引:0
|
作者
Gunhee Cho
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Invariant metrics; Complex ellipsoid; Bergman metric; Kahler–Einstein metric; Kobayashi–Royden metric; Caratheodory–Reiffen metric; Geometric convex domain; Wu–Yau theorem; 32T27;
D O I
暂无
中图分类号
学科分类号
摘要
We provide a class of geometric convex domains on which the Carathéodory–Reiffen metric, the Bergman metric, the complete Kähler–Einstein metric of negative scalar curvature are uniformly equivalent, but not proportional to each other. In a two-dimensional case, we provide a full description of curvature tensors of the Bergman metric on the weakly pseudoconvex boundary point and show that invariant metrics are proportional to each other if and only if the geometric convex domain is the Euclidean ball.
引用
收藏
页码:2088 / 2104
页数:16
相关论文
共 50 条