Positivity and Completeness of Invariant Metrics

被引:0
|
作者
Taeyong Ahn
Hervé Gaussier
Kang-Tae Kim
机构
[1] POSTECH,Center for Geometry and its Applications
[2] Univ. Grenoble Alpes,Center for Geometry and its Applications and Department of Mathematics
[3] IF,undefined
[4] CNRS,undefined
[5] IF,undefined
[6] POSTECH,undefined
来源
关键词
Holomorphic peak functions; Invariant metrics; Unbounded domains; 32A40; 32F45; 32T40;
D O I
暂无
中图分类号
学科分类号
摘要
We present a method for constructing global holomorphic peak functions from local holomorphic support functions for broad classes of unbounded domains in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^n$$\end{document}. As an application, we establish a method for showing the positivity and completeness of invariant metrics including the Bergman metric mainly for the unbounded domains.
引用
收藏
页码:1173 / 1185
页数:12
相关论文
共 50 条
  • [41] Comparison of invariant functions and metrics
    Kosinski, Lukasz
    ARCHIV DER MATHEMATIK, 2014, 102 (03) : 271 - 281
  • [42] Strong localization of invariant metrics
    Fornaess, John Erik
    Nikolov, Nikolai
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 353 - 360
  • [43] Comparison of invariant functions and metrics
    Łukasz Kosiński
    Archiv der Mathematik, 2014, 102 : 271 - 281
  • [44] INVARIANT METRICS ON RIEMANN SURFACES
    MINDA, CD
    NAKKI, R
    JOURNAL D ANALYSE MATHEMATIQUE, 1981, 39 : 25 - 44
  • [45] Invariant quantum ensemble metrics
    Matzke, DJ
    Lawrence, PN
    Quantum Information and Computation III, 2005, 5815 : 115 - 126
  • [46] INVARIANT CONFORMAL METRICS ON Sn
    Espinar, Jose M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (11) : 5649 - 5661
  • [47] Positivity properties of metrics and delta-forms
    Gubler, Walter
    Kuennemann, Klaus
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 752 : 141 - 177
  • [48] BERGMAN COMPLETENESS IS NOT A QUASI-CONFORMAL INVARIANT
    Wang, Xu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (02) : 543 - 548
  • [49] FUNCTIONAL POSITIVITY AND INVARIANT SUBSPACES OF SEMIGROUPS OF OPERATORS
    ZHONG, Y
    HOUSTON JOURNAL OF MATHEMATICS, 1993, 19 (02): : 239 - 262
  • [50] Invariant Differential Positivity and Consensus on Lie Groups
    Mostajeran, C.
    Sepulchre, R.
    IFAC PAPERSONLINE, 2016, 49 (18): : 630 - 635