Boundedness of fractional heat semigroups generated by degenerate Schrödinger operators

被引:0
|
作者
Zhiyong Wang
Pengtao Li
Yu Liu
机构
[1] University of Science and Technology Beijing,School of Mathematics and Physics
[2] Qingdao University,School of Mathematics and Statistics
来源
关键词
Degenerate Schrödinger operators; Fractional heat semigroup; Fractional Laplacian; Weight Morrey spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=-1ωdiv(A(x)·∇)+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=-\frac{1}{\omega }\textrm{div}(A(x)\cdot \nabla )+V$$\end{document} be a degenerate Schrödinger operator in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, where ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is a weight of the Muckenhoupt class A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, A(x) is a real and symmetric matrix depending on x and satisfies C-1ω(x)|ξ|2≤A(x)ξiξj¯≤Cω(x)|ξ|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C^{-1}\omega (x)|\xi |^{2} \le A(x)\xi _{i}\overline{\xi _{j}}\le C\omega (x)|\xi |^{2} \end{aligned}$$\end{document}for some positive constant C and all x, ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, and V is a nonnegative potential belonging to a certain reverse Hölder class with respect to the measure ω(x)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x)dx$$\end{document}. By the subordinative formula, various regularity estimates about the fractional heat semigroup {e-tLα}t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e^{-tL^{\alpha }}\}_{t>0}$$\end{document} are investigated, where Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document} denotes the fractional powers of L for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. As an application, we obtain the boundedness on the weighted Morrey spaces and BMO type spaces for some operator related to Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] The Lp-boundedness of wave operators for fourth order Schrödinger operators on R4
    Galtbayar, Artbazar
    Yajima, Kenji
    [J]. JOURNAL OF SPECTRAL THEORY, 2024, 14 (01) : 271 - 354
  • [42] Schrödinger Operators Generated by Locally Constant Functions on the Fibonacci Subshift
    David Damanik
    Licheng Fang
    Hyunkyu Jun
    [J]. Annales Henri Poincaré, 2021, 22 : 1459 - 1498
  • [43] Regularization of Schrödinger groups and semigroups
    V. Zh. Sakbaev
    O. G. Smolyanov
    [J]. Doklady Mathematics, 2012, 86 : 483 - 487
  • [44] The Weyl Symbol of Schrödinger Semigroups
    Laurent Amour
    Lisette Jager
    Jean Nourrigat
    [J]. Annales Henri Poincaré, 2015, 16 : 1479 - 1488
  • [45] Sharp Gaussian Estimates for Heat Kernels of Schrödinger Operators
    Krzysztof Bogdan
    Jacek Dziubański
    Karol Szczypkowski
    [J]. Integral Equations and Operator Theory, 2019, 91
  • [46] Boundedness of High Order Commutators of Riesz Transforms Associated with Schr?dinger Type Operators
    Yueshan Wang
    [J]. Analysis in Theory and Applications, 2020, 36 (01) : 99 - 110
  • [47] Dunkl–Schrödinger Operators
    Béchir Amri
    Amel Hammi
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 1033 - 1058
  • [48] Pseudomodes of Schrödinger operators
    Krejčiřík, David
    Siegl, Petr
    [J]. Frontiers in Physics, 2024, 12
  • [49] BOUNDEDNESS PROPERTIES FOR SEMIGROUPS OF OPERATORS
    TERKELSE.F
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (01) : 107 - 111
  • [50] Spectra of Periodic Schrödinger Operators on the Degenerate Zigzag Nanotube with δ Type Vertex Conditions
    Hiroaki Niikuni
    [J]. Integral Equations and Operator Theory, 2014, 79 : 477 - 505