Boundedness of fractional heat semigroups generated by degenerate Schrödinger operators

被引:0
|
作者
Zhiyong Wang
Pengtao Li
Yu Liu
机构
[1] University of Science and Technology Beijing,School of Mathematics and Physics
[2] Qingdao University,School of Mathematics and Statistics
来源
关键词
Degenerate Schrödinger operators; Fractional heat semigroup; Fractional Laplacian; Weight Morrey spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=-1ωdiv(A(x)·∇)+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=-\frac{1}{\omega }\textrm{div}(A(x)\cdot \nabla )+V$$\end{document} be a degenerate Schrödinger operator in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, where ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is a weight of the Muckenhoupt class A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, A(x) is a real and symmetric matrix depending on x and satisfies C-1ω(x)|ξ|2≤A(x)ξiξj¯≤Cω(x)|ξ|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C^{-1}\omega (x)|\xi |^{2} \le A(x)\xi _{i}\overline{\xi _{j}}\le C\omega (x)|\xi |^{2} \end{aligned}$$\end{document}for some positive constant C and all x, ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, and V is a nonnegative potential belonging to a certain reverse Hölder class with respect to the measure ω(x)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x)dx$$\end{document}. By the subordinative formula, various regularity estimates about the fractional heat semigroup {e-tLα}t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e^{-tL^{\alpha }}\}_{t>0}$$\end{document} are investigated, where Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document} denotes the fractional powers of L for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. As an application, we obtain the boundedness on the weighted Morrey spaces and BMO type spaces for some operator related to Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Boundedness of operators generated by fractional semigroups associated with Schrodinger operators on Campanato type spaces via T1 theorem
    Wang, Zhiyong
    Li, Pengtao
    Zhang, Chao
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (04)
  • [42] On-diagonal Heat Kernel Estimates for Schrödinger Semigroups and Their Application
    Jian Wang
    Communications in Mathematics and Statistics, 2018, 6 : 493 - 508
  • [43] Spectral Fluctuations of Schrödinger Operators Generated by Critical Points of the Potential
    Brice Camus
    Journal of Statistical Physics, 2006, 123 : 811 - 829
  • [44] The Herz-Boundedness of Commutators Related to Schrödinger Operators in the Setting of Heisenberg Group
    Chunfang Gao
    Pengtao Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 1213 - 1240
  • [45] Commutators of BMO functions and degenerate Schrödinger operators with certain nonnegative potentials
    Yu Liu
    Monatshefte für Mathematik, 2012, 165 : 41 - 56
  • [46] Schrödinger Operators Generated by Locally Constant Functions on the Fibonacci Subshift
    David Damanik
    Licheng Fang
    Hyunkyu Jun
    Annales Henri Poincaré, 2021, 22 : 1459 - 1498
  • [47] Regularization of Schrödinger groups and semigroups
    V. Zh. Sakbaev
    O. G. Smolyanov
    Doklady Mathematics, 2012, 86 : 483 - 487
  • [48] The Lp-boundedness of wave operators for fourth order Schrödinger operators on R4
    Galtbayar, Artbazar
    Yajima, Kenji
    JOURNAL OF SPECTRAL THEORY, 2024, 14 (01) : 271 - 354
  • [49] The Weyl Symbol of Schrödinger Semigroups
    Laurent Amour
    Lisette Jager
    Jean Nourrigat
    Annales Henri Poincaré, 2015, 16 : 1479 - 1488
  • [50] Sharp Gaussian Estimates for Heat Kernels of Schrödinger Operators
    Krzysztof Bogdan
    Jacek Dziubański
    Karol Szczypkowski
    Integral Equations and Operator Theory, 2019, 91