Boundedness of fractional heat semigroups generated by degenerate Schrödinger operators

被引:0
|
作者
Zhiyong Wang
Pengtao Li
Yu Liu
机构
[1] University of Science and Technology Beijing,School of Mathematics and Physics
[2] Qingdao University,School of Mathematics and Statistics
来源
关键词
Degenerate Schrödinger operators; Fractional heat semigroup; Fractional Laplacian; Weight Morrey spaces; 42B20; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let L=-1ωdiv(A(x)·∇)+V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=-\frac{1}{\omega }\textrm{div}(A(x)\cdot \nabla )+V$$\end{document} be a degenerate Schrödinger operator in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, where ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is a weight of the Muckenhoupt class A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, A(x) is a real and symmetric matrix depending on x and satisfies C-1ω(x)|ξ|2≤A(x)ξiξj¯≤Cω(x)|ξ|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} C^{-1}\omega (x)|\xi |^{2} \le A(x)\xi _{i}\overline{\xi _{j}}\le C\omega (x)|\xi |^{2} \end{aligned}$$\end{document}for some positive constant C and all x, ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}, and V is a nonnegative potential belonging to a certain reverse Hölder class with respect to the measure ω(x)dx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega (x)dx$$\end{document}. By the subordinative formula, various regularity estimates about the fractional heat semigroup {e-tLα}t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{e^{-tL^{\alpha }}\}_{t>0}$$\end{document} are investigated, where Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document} denotes the fractional powers of L for α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document}. As an application, we obtain the boundedness on the weighted Morrey spaces and BMO type spaces for some operator related to Lα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\alpha }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] Feller semigroups generated by degenerate elliptic operators
    Taira, K
    Favini, A
    Romanelli, S
    SEMIGROUP FORUM, 2000, 60 (02) : 296 - 309
  • [22] Observability Results Related to Fractional Schrödinger Operators
    Fabricio Macià
    Vietnam Journal of Mathematics, 2021, 49 : 919 - 936
  • [23] Existence of the Gauge for Fractional Laplacian Schrödinger Operators
    Michael W. Frazier
    Igor E. Verbitsky
    The Journal of Geometric Analysis, 2021, 31 : 9016 - 9044
  • [24] Boundedness and compactness of commutators related with Schrödinger operators on Heisenberg groups
    Li Yang
    Pengtao Li
    Journal of Pseudo-Differential Operators and Applications, 2023, 14
  • [25] Lp-boundedness properties of variation operators in the Schrödinger setting
    J. J. Betancor
    J. C. Fariña
    E. Harboure
    L. Rodríguez-Mesa
    Revista Matemática Complutense, 2013, 26 : 485 - 534
  • [26] Characterizations of infinitesimal relative boundedness for higher order Schrödinger operators
    Cao, Jun
    Gao, Mengyao
    Jin, Yongyang
    Wang, Chao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [27] Boundedness Estimates for Commutators of Riesz Transforms Related to Schr?dinger Operators
    Yueshan Wang
    Yuexiang He
    Analysis in Theory and Applications, 2018, 34 (04) : 306 - 322
  • [28] A Remark on Lp-Boundedness of Wave Operators¶for Two Dimensional Schrödinger Operators
    Arne Jensen
    Kenji Yajima
    Communications in Mathematical Physics, 2002, 225 : 633 - 637
  • [29] Boundedness for Fractional Integral of the Bi-Harmonic Schrödinger Operator
    Bongioanni, Bruno
    Toschi, Marisa
    Urrutia, Bruno
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2025, 31 (02)
  • [30] Variation Operators for Semigroups and Riesz Transforms on BMO in the Schrödinger Setting
    Jorge J. Betancor
    Juan C. Fariña
    Eleonor Harboure
    Lourdes Rodríguez-Mesa
    Potential Analysis, 2013, 38 : 711 - 739