Complex bursting dynamics in a Rayleigh–Liénard oscillator

被引:0
|
作者
Haolan Wang
Youhua Qian
机构
[1] Zhejiang Normal University,School of Mathematical Sciences
来源
Nonlinear Dynamics | 2024年 / 112卷
关键词
Bursting oscillations; Fast-slow analysis; Melnikov method; Delay behaviors;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the intricate bursting oscillations in a Rayleigh–Liénard oscillator induced by parametric and external slow-varying excitations are proposed. By treating the slow-varying excitations as the generalized state variables, an autonomous system is produced. We identify symmetric bursting oscillations of four distinct types. By simultaneously overlapping the equilibrium branches and the transformed phase portraits and using the fast-slow analysis method, the generation principles of four bursting patterns are disclosed. To explore the parameter qualities associated with the existence of the heteroclinic and homoclinic bifurcations, the Melnikov method is utilized. In addition, we describe the Hopf delay generation mechanism and how the asymptotic theory is used to figure out the delay interval. Furthermore, the precision of the results is demonstrated using the numerical simulations.
引用
收藏
页码:7679 / 7693
页数:14
相关论文
共 50 条
  • [1] Complex bursting dynamics in a Rayleigh-Liénard oscillator
    Wang, Haolan
    Qian, Youhua
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7679 - 7693
  • [2] Bursting dynamics in Rayleigh-Bénard convection
    Surajit Dan
    Manojit Ghosh
    Yada Nandukumar
    Syamal K. Dana
    Pinaki Pal
    The European Physical Journal Special Topics, 2017, 226 : 2089 - 2099
  • [3] The Response of a Rayleigh–Liénard Oscillator to a Fundamental Resonance
    Attilio Maccari
    Nonlinear Dynamics, 2001, 26 (3) : 213 - 232
  • [4] Extreme bursting events via pulse-shaped explosion in mixed Rayleigh-Liénard nonlinear oscillator
    B. Kaviya
    R. Suresh
    V. K. Chandrasekar
    The European Physical Journal Plus, 137
  • [5] The uniqueness of limit cycles for a generalized Rayleigh-Liénard oscillator
    Gebreselassie, Kibreab
    Wang, Zhaoxia
    Zou, Lan
    NONLINEAR DYNAMICS, 2024, 112 (21) : 19023 - 19036
  • [6] Modified fractional Rayleigh-Liénard oscillator and the renormalisation group (RG) method
    Mitra, Shreya
    Ghose-Choudhury, A.
    Garai, Sudip
    Poddar, Sujoy
    Guha, Partha
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (04):
  • [7] Mechanisms of mixed-mode oscillations in a Rayleigh-Liénard oscillator with nonlinearities
    Ma, Xindong
    Yang, Weijie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [8] Bursting, mixed-mode oscillations and homoclinic bifurcation in a parametrically and self-excited mixed Rayleigh–Liénard oscillator with asymmetric double well potential
    Yélomè Judicaël Fernando Kpomahou
    Joseph Adébiyi Adéchinan
    Armel Martial Ngounou
    Arnaud Edouard Yamadjako
    Pramana, 96
  • [9] Dynamic response and bifurcation for Rayleigh-Liénard oscillator under multiplicative colored noise
    Yue, Xiaole
    Yu, Bei
    Li, Yongge
    Xu, Yong
    Chaos, Solitons and Fractals, 2022, 155
  • [10] Complex Periodic Bursting Structures in the Rayleigh–van der Pol–Duffing Oscillator
    Xindong Ma
    Qinsheng Bi
    Lifeng Wang
    Journal of Nonlinear Science, 2022, 32