Modified fractional Rayleigh-Liénard oscillator and the renormalisation group (RG) method

被引:0
|
作者
Mitra, Shreya [1 ]
Ghose-Choudhury, A. [1 ]
Garai, Sudip [1 ]
Poddar, Sujoy [1 ]
Guha, Partha [2 ]
机构
[1] Diamond Harbour Womens Univ, DH Rd, Sarisha 743368, India
[2] Khalifa Univ Sci & Technol, Dept Math, Main Campus,POB 127788, Abu Dhabi 127788, U Arab Emirates
来源
PRAMANA-JOURNAL OF PHYSICS | 2024年 / 98卷 / 04期
关键词
Nonlinear oscillators; renormalisation group method; modified Rayleigh-Li & eacute; nard system; fractionally damped oscillators; 05.45.-a; 64.60.ae; 05.30.Pr;
D O I
10.1007/s12043-024-02843-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the technique of renormalisation group (RG) to investigate periodic solutions of the modified Rayleigh-Li & eacute;nard oscillator, both in presence of usual integer order damping and fractional order damping. In the latter case, a parametric driven periodic external force is also taken into account. The existence of limit cycle solutions is evident in both scenarios.
引用
收藏
页数:12
相关论文
共 20 条
  • [1] Complex bursting dynamics in a Rayleigh-Liénard oscillator
    Wang, Haolan
    Qian, Youhua
    NONLINEAR DYNAMICS, 2024, 112 (09) : 7679 - 7693
  • [2] The uniqueness of limit cycles for a generalized Rayleigh-Liénard oscillator
    Gebreselassie, Kibreab
    Wang, Zhaoxia
    Zou, Lan
    NONLINEAR DYNAMICS, 2024, 112 (21) : 19023 - 19036
  • [3] A modified perturbation method for global dynamic analysis of generalized mixed Rayleigh-Liénard oscillator with cubic and quintic nonlinearities
    Li, Zhenbo
    Hou, Linxia
    Zhang, Yiqing
    Xu, Feng
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [4] Mechanisms of mixed-mode oscillations in a Rayleigh-Liénard oscillator with nonlinearities
    Ma, Xindong
    Yang, Weijie
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [5] Dynamic response and bifurcation for Rayleigh-Liénard oscillator under multiplicative colored noise
    Yue, Xiaole
    Yu, Bei
    Li, Yongge
    Xu, Yong
    Chaos, Solitons and Fractals, 2022, 155
  • [6] On the uniqueness of periodic solutions for a Rayleigh-Liénard system with impulses
    Chen, Hebai
    Jin, Jie
    Wang, Zhaoxia
    Xiao, Dongmei
    MATHEMATISCHE ANNALEN, 2025, 391 (02) : 2901 - 2923
  • [7] Bifurcation and Chaos Control of Mixed Rayleigh-LiéNard Oscillator With Two Periodic Excitations and Mixed Delays
    Zhao, Hongzhen
    Li, Jing
    Zhu, Shaotao
    Zhang, Yufeng
    Sun, Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (05) : 5586 - 5601
  • [8] Extreme bursting events via pulse-shaped explosion in mixed Rayleigh-Liénard nonlinear oscillator
    B. Kaviya
    R. Suresh
    V. K. Chandrasekar
    The European Physical Journal Plus, 137
  • [9] Complex bursting dynamics in a Rayleigh–Liénard oscillator
    Haolan Wang
    Youhua Qian
    Nonlinear Dynamics, 2024, 112 : 7679 - 7693
  • [10] The Response of a Rayleigh–Liénard Oscillator to a Fundamental Resonance
    Attilio Maccari
    Nonlinear Dynamics, 2001, 26 (3) : 213 - 232