Complex bursting dynamics in a Rayleigh–Liénard oscillator

被引:0
|
作者
Haolan Wang
Youhua Qian
机构
[1] Zhejiang Normal University,School of Mathematical Sciences
来源
Nonlinear Dynamics | 2024年 / 112卷
关键词
Bursting oscillations; Fast-slow analysis; Melnikov method; Delay behaviors;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the intricate bursting oscillations in a Rayleigh–Liénard oscillator induced by parametric and external slow-varying excitations are proposed. By treating the slow-varying excitations as the generalized state variables, an autonomous system is produced. We identify symmetric bursting oscillations of four distinct types. By simultaneously overlapping the equilibrium branches and the transformed phase portraits and using the fast-slow analysis method, the generation principles of four bursting patterns are disclosed. To explore the parameter qualities associated with the existence of the heteroclinic and homoclinic bifurcations, the Melnikov method is utilized. In addition, we describe the Hopf delay generation mechanism and how the asymptotic theory is used to figure out the delay interval. Furthermore, the precision of the results is demonstrated using the numerical simulations.
引用
收藏
页码:7679 / 7693
页数:14
相关论文
共 50 条
  • [41] Global dynamics of a polynomial Liénard differential system with arbitrary degree
    Chen, Hebai
    Jia, Man
    Zhang, Baodong
    Zhang, Xiang
    NONLINEAR DYNAMICS, 2024, 112 (9) : 7233 - 7268
  • [42] Periodic bursting oscillations in a hybrid Rayleigh-Van der Pol-Duffing oscillator
    Zhao, Feng
    Ma, Xindong
    Cao, Shuqian
    NONLINEAR DYNAMICS, 2023, 111 (03) : 2263 - 2279
  • [43] Two bursting patterns induced by system solutions approaching infinity in a modified Rayleigh–Duffing oscillator
    Xindong Ma
    Xiujing Han
    Wen’an Jiang
    Qinsheng Bi
    Pramana, 2020, 94
  • [44] Exact solutions of the Li,nard- and generalized Li,nard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator
    Harko, Tiberiu
    Liang, Shi-Dong
    JOURNAL OF ENGINEERING MATHEMATICS, 2016, 98 (01) : 93 - 111
  • [45] Closed-form bound states for two Dunkl-Liénard oscillator systems
    Schulze-Halberg, Axel
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (02N03):
  • [46] Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator
    Tiberiu Harko
    Shi-Dong Liang
    Journal of Engineering Mathematics, 2016, 98 : 93 - 111
  • [47] Two bursting patterns induced by system solutions approaching infinity in a modified Rayleigh-Duffing oscillator
    Ma, Xindong
    Han, Xiujing
    Jiang, Wen'an
    Bi, Qinsheng
    PRAMANA-JOURNAL OF PHYSICS, 2020, 94 (01):
  • [48] Complex bursting dynamics in an embryonic respiratory neuron model
    Wang, Yangyang
    Rubin, Jonathan E.
    CHAOS, 2020, 30 (04)
  • [49] The inverse problem of a mixed Li,nard-type nonlinear oscillator equation from symmetry perspective
    Tiwari, Ajey K.
    Pandey, S. N.
    Chandrasekar, V. K.
    Senthilvelan, M.
    Lakshmanan, M.
    ACTA MECHANICA, 2016, 227 (07) : 2039 - 2051
  • [50] The inverse problem of a mixed Liénard-type nonlinear oscillator equation from symmetry perspective
    Ajey K. Tiwari
    S. N. Pandey
    V. K. Chandrasekar
    M. Senthilvelan
    M. Lakshmanan
    Acta Mechanica, 2016, 227 : 2039 - 2051