Complex bursting dynamics in a Rayleigh–Liénard oscillator

被引:0
|
作者
Haolan Wang
Youhua Qian
机构
[1] Zhejiang Normal University,School of Mathematical Sciences
来源
Nonlinear Dynamics | 2024年 / 112卷
关键词
Bursting oscillations; Fast-slow analysis; Melnikov method; Delay behaviors;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the intricate bursting oscillations in a Rayleigh–Liénard oscillator induced by parametric and external slow-varying excitations are proposed. By treating the slow-varying excitations as the generalized state variables, an autonomous system is produced. We identify symmetric bursting oscillations of four distinct types. By simultaneously overlapping the equilibrium branches and the transformed phase portraits and using the fast-slow analysis method, the generation principles of four bursting patterns are disclosed. To explore the parameter qualities associated with the existence of the heteroclinic and homoclinic bifurcations, the Melnikov method is utilized. In addition, we describe the Hopf delay generation mechanism and how the asymptotic theory is used to figure out the delay interval. Furthermore, the precision of the results is demonstrated using the numerical simulations.
引用
收藏
页码:7679 / 7693
页数:14
相关论文
共 50 条
  • [31] Dynamics of a quasiperiodically forced Rayleigh oscillator
    Chedjou, J. C.
    Kana, L. K.
    Moussa, I.
    Kyamakya, K.
    Laurent, A.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2006, 128 (03): : 600 - 607
  • [32] On the dynamics of the Rayleigh-Duffing oscillator
    Gine, Jaume
    Valls, Claudia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 309 - 319
  • [33] Novel bursting dynamics and the mechanism analysis in a mechanical oscillator
    Ma, Xindong
    Zhao, Heqi
    Bi, Qinsheng
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1485 - 1499
  • [34] Novel bursting dynamics and the mechanism analysis in a mechanical oscillator
    Xindong Ma
    Heqi Zhao
    Qinsheng Bi
    Nonlinear Dynamics, 2022, 109 : 1485 - 1499
  • [35] Periodic bursting oscillations in a hybrid Rayleigh–Van der Pol–Duffing oscillator
    Feng Zhao
    Xindong Ma
    Shuqian Cao
    Nonlinear Dynamics, 2023, 111 : 2263 - 2279
  • [36] Bursting Dynamics in the General Hybrid Rayleigh-van der Pol-Duffing Oscillator with Two External Periodic Excitations
    Qian, Youhua
    Wang, Haolan
    Zhang, Danjin
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 2943 - 2957
  • [37] Bursting Dynamics in the General Hybrid Rayleigh-van der Pol-Duffing Oscillator with Two External Periodic Excitations
    Youhua Qian
    Haolan Wang
    Danjin Zhang
    Journal of Vibration Engineering & Technologies, 2024, 12 : 2943 - 2957
  • [38] A third-order extension to the Liénard oscillator and it’s competitive modes analysis
    Robert A. Van Gorder
    Nonlinear Dynamics, 2016, 86 : 235 - 244
  • [39] Modeling and analysis of schottky diode bridge and JFET based liénard oscillator circuit
    Cakir, Kuebra
    Mutlu, Resat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2024, 42 (02): : 503 - 515
  • [40] Global dynamics of a polynomial Liénard differential system with arbitrary degree
    Hebai Chen
    Man Jia
    Baodong Zhang
    Xiang Zhang
    Nonlinear Dynamics, 2024, 112 : 7233 - 7268