共 50 条
Maximum Principles Applied to Translating Solitons of the Mean Curvature Flow in Product Spaces
被引:0
|作者:
Márcio Batista
Henrique F. de Lima
机构:
[1] CPMAT-IM,Departamento de Matemática
[2] Universidade Federal de Alagoas,undefined
[3] Universidade Federal de Campina Grande,undefined
来源:
关键词:
Product spaces;
translating solitons;
entire translating graphs;
maximum principles;
Moser–Bernstein type results;
quasilinear PDEs;
Primary 35B50;
35J60;
Secondary 53C44;
53C42;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper we study translating solitons of the mean curvature flow in certain product spaces. Assuming either a certain volume growth of balls or an appropriated growth on the scalar curvature we establish an Omori-Yau type maximum principle for the drift Laplacian and so we obtain some nonexistence results. Also, supposing a boundedness on the Ck\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^k$$\end{document} norm of a smooth function u, for k=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=1$$\end{document} or 2, which determines an entire translating graph Σ(u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Sigma (u)$$\end{document} constructed over the base Pn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^n$$\end{document} of a product space R×Pn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}\times {\mathbb {P}}^n$$\end{document}, and under suitable constraints on the curvatures of Pn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {P}}^n$$\end{document}, we are able to apply a Bernstein type result to conclude that u must be constant. As consequence, we establish the nonexistence of entire solutions for quasilinear partial differential equations which are directly related to translating graphs in R×Pn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}\times {\mathbb {P}}^n$$\end{document}. In particular, when the ambient space is Rn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^{n+1}$$\end{document}, we conclude that there exists no translating graph of a translator u∈C∞(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$u\in C^{\infty }(\mathbb R^n)$$\end{document} with finite C2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^2$$\end{document} norm. We discuss the importance of the hypotheses in our main results exploring suitable examples of translating graphs, more precisely: the translating paraboloid and the grim reaper cylinder in Rn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}^{n+1}$$\end{document}, and a logarithmic type entire translating graph in R×H2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {R}}\times {\mathbb {H}}^2$$\end{document}. Finally, we also deal with the notion of λ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda $$\end{document}-translating graphs.
引用
收藏
相关论文