Maximum Principles Applied to Translating Solitons of the Mean Curvature Flow in Product Spaces

被引:0
|
作者
Márcio Batista
Henrique F. de Lima
机构
[1] CPMAT-IM,Departamento de Matemática
[2] Universidade Federal de Alagoas,undefined
[3] Universidade Federal de Campina Grande,undefined
来源
Results in Mathematics | 2023年 / 78卷
关键词
Product spaces; translating solitons; entire translating graphs; maximum principles; Moser–Bernstein type results; quasilinear PDEs; Primary 35B50; 35J60; Secondary 53C44; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study translating solitons of the mean curvature flow in certain product spaces. Assuming either a certain volume growth of balls or an appropriated growth on the scalar curvature we establish an Omori-Yau type maximum principle for the drift Laplacian and so we obtain some nonexistence results. Also, supposing a boundedness on the Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^k$$\end{document} norm of a smooth function u, for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} or 2, which determines an entire translating graph Σ(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma (u)$$\end{document} constructed over the base Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n$$\end{document} of a product space R×Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times {\mathbb {P}}^n$$\end{document}, and under suitable constraints on the curvatures of Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}^n$$\end{document}, we are able to apply a Bernstein type result to conclude that u must be constant. As consequence, we establish the nonexistence of entire solutions for quasilinear partial differential equations which are directly related to translating graphs in R×Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times {\mathbb {P}}^n$$\end{document}. In particular, when the ambient space is Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1}$$\end{document}, we conclude that there exists no translating graph of a translator u∈C∞(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in C^{\infty }(\mathbb R^n)$$\end{document} with finite C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^2$$\end{document} norm. We discuss the importance of the hypotheses in our main results exploring suitable examples of translating graphs, more precisely: the translating paraboloid and the grim reaper cylinder in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n+1}$$\end{document}, and a logarithmic type entire translating graph in R×H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}\times {\mathbb {H}}^2$$\end{document}. Finally, we also deal with the notion of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-translating graphs.
引用
收藏
相关论文
共 50 条