On the mean curvature flow solitons in Riemannian spaces endowed with a Killing vector field

被引:0
|
作者
Araujo, Jogli G. [1 ]
de Lima, Henrique F. [2 ]
Gomes, Wallace F. [2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Matemat, BR-52171900 Recife, PE, Brazil
[2] Univ Fed Campina Grande, Dept Matemat, 58-429-970, BR-58429970 Campina Grande, Paraíba, Brazil
关键词
Killing vector field; Warped products; Mean curvature flow solitons; Entire Killing graphs; Moser-Bernstein type results; BERNSTEIN-TYPE THEOREM; MINIMAL-SURFACES; HYPERSURFACES; PROPERTY; GRAPHS;
D O I
10.1007/s40879-024-00726-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the uniqueness and nonexistence of mean curvature flow solitons (MCFS) with respect to a nowhere zero Killing vector field K globally defined in a Riemannian space, via suitable Liouville type results. For this, we consider the ambient space as a warped product of the type M-n x(rho) R, where the base M-n, with n >= 3, is an arbitrarily fixed integral leaf of the distribution orthogonal to K and the warping function rho is an element of C-infinity(M) is given by rho = |K|. In particular, assuming that M-n is closed (that is, compact without boundary), we conclude that the only closed MCFS with respect to K are the totally geodesic slices. Furthermore, we establish new Moser-Bernstein type results concerning entire Killing graphs constructed through the flow of K and which are complete MCFS with respect to it.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] MEAN CURVATURE FLOW IN A RIEMANNIAN MANIFOLD ENDOWED WITH A KILLING VECTOR FIELD
    Weng, Liangjun
    PACIFIC JOURNAL OF MATHEMATICS, 2020, 308 (02) : 435 - 472
  • [2] Submanifolds immersed in Riemannian spaces endowed with a Killing vector field: Nonexistence and rigidity
    Freitas, Allan G.
    de Lima, Henrique F.
    Lima Jr, Eraldo A.
    Santos, Marcio S.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 75
  • [3] Stability of mean curvature flow solitons in warped product spaces
    Luis J. Alías
    Jorge H. S. de Lira
    Marco Rigoli
    Revista Matemática Complutense, 2022, 35 : 287 - 309
  • [4] Stability of mean curvature flow solitons in warped product spaces
    Alias, Luis J.
    de Lira, Jorge H. S.
    Rigoli, Marco
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (02): : 287 - 309
  • [5] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Luis J. Alías
    Jorge H. de Lira
    Marco Rigoli
    The Journal of Geometric Analysis, 2020, 30 : 1466 - 1529
  • [6] Mean Curvature Flow Solitons in the Presence of Conformal Vector Fields
    Alias, Luis J.
    de Lira, Jorge H.
    Rigoli, Marco
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1466 - 1529
  • [7] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [8] Killing graphs with prescribed mean curvature and Riemannian submersions
    Dajczer, M.
    de Lira, J. H.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 763 - 775
  • [9] Killing vector fields and the curvature tensor of a Riemannian manifold
    Nikonorov Y.G.
    Siberian Advances in Mathematics, 2014, 24 (3) : 187 - 192
  • [10] ON THE RIGIDITY OF MEAN CURVATURE FLOW SOLITONS IN CERTAIN SEMI-RIEMANNIAN WARPED PRODUCTS
    Araujo, Jogli G.
    De Lima, Henrique F.
    Gomes, Wallace F.
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (01) : 62 - 74