BV functions in Hilbert spaces

被引:0
|
作者
Giuseppe Da Prato
Alessandra Lunardi
机构
[1] Scuola Normale Superiore,Dipartimento di Scienze Matematiche, Fisiche e Informatiche
[2] Università di Parma,undefined
来源
Mathematische Annalen | 2021年 / 381卷
关键词
28C20; 26E15; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the basic theory of BV functions in a Hilbert space X endowed with a (not necessarily Gaussian) probability measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We present necessary and sufficient conditions in order that a function u∈Lp(X,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L^p(X, \nu )$$\end{document} is of bounded variation. We also discuss the De Giorgi approach to BV functions through the behavior as t→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow 0$$\end{document} of ∫X‖∇T(t)u‖dν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _X \Vert \nabla T(t)u\Vert \,d\nu $$\end{document}, for a smoothing semigroup T(t). Particular attention is devoted to the case where u is the indicator function of a sublevel set {x:g(x)<r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x:\; g(x)<r\}$$\end{document} of a real Borel function g. We give several examples, for different measures ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} such as weighted Gaussian measures, infinite products of non Gaussian measures, and invariant measures of some stochastic PDEs such as reaction-diffusion equations and Burgers equation.
引用
收藏
页码:1653 / 1722
页数:69
相关论文
共 50 条
  • [41] HILBERT SPACES OF HOLOMORPHIC FUNCTIONS ON BOUNDED DOMAINS
    FISCHER, G
    MANUSCRIPTA MATHEMATICA, 1970, 3 (03) : 305 - &
  • [42] Groups, Special Functions and Rigged Hilbert Spaces
    Celeghini, Enrico
    Gadella, Manuel
    del Olmo, Mariano A.
    AXIOMS, 2019, 8 (03)
  • [43] HILBERT MATRIX OPERATOR ON SPACES OF ANALYTIC FUNCTIONS
    Lanucha, Bartosz
    Nowak, Maria
    Pavlovic, Miroslav
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 161 - 174
  • [44] Composition operators on Hilbert spaces of entire functions
    Luan, Doan Minh
    Khoi, Le Hai
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (06) : 495 - 499
  • [45] PARTIAL HILBERT-SPACES AND AMPLITUDE FUNCTIONS
    GUDDER, S
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1986, 45 (03): : 311 - 326
  • [46] Prox-regular functions in Hilbert spaces
    Bernard, F
    Thibault, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (01) : 1 - 14
  • [47] Hilbert spaces of entire functions and Dirichlet L-functions
    Lagarias, JC
    FRONTIERS IN NUMBER THEORY, PHYSICS AND GEOMETRY I: ON RANDOM MATRICES, ZETA FUNCTIONS, AND DYNAMICAL SYSTEMS, 2006, : 367 - 379
  • [48] Zeros of functions in Hilbert spaces of Dirichlet series
    Seip, Kristian
    MATHEMATISCHE ZEITSCHRIFT, 2013, 274 (3-4) : 1327 - 1339
  • [49] Multiplication operators on Hilbert spaces of analytic functions
    Yousefi, B
    ARCHIV DER MATHEMATIK, 2004, 83 (06) : 536 - 539
  • [50] Hilbert Spaces of Entire Functions and Composition Operators
    Minh Luan Doan
    Le Hai Khoi
    Complex Analysis and Operator Theory, 2016, 10 : 213 - 230