BV functions in Hilbert spaces

被引:0
|
作者
Giuseppe Da Prato
Alessandra Lunardi
机构
[1] Scuola Normale Superiore,Dipartimento di Scienze Matematiche, Fisiche e Informatiche
[2] Università di Parma,undefined
来源
Mathematische Annalen | 2021年 / 381卷
关键词
28C20; 26E15; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the basic theory of BV functions in a Hilbert space X endowed with a (not necessarily Gaussian) probability measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We present necessary and sufficient conditions in order that a function u∈Lp(X,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L^p(X, \nu )$$\end{document} is of bounded variation. We also discuss the De Giorgi approach to BV functions through the behavior as t→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow 0$$\end{document} of ∫X‖∇T(t)u‖dν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _X \Vert \nabla T(t)u\Vert \,d\nu $$\end{document}, for a smoothing semigroup T(t). Particular attention is devoted to the case where u is the indicator function of a sublevel set {x:g(x)<r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x:\; g(x)<r\}$$\end{document} of a real Borel function g. We give several examples, for different measures ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} such as weighted Gaussian measures, infinite products of non Gaussian measures, and invariant measures of some stochastic PDEs such as reaction-diffusion equations and Burgers equation.
引用
收藏
页码:1653 / 1722
页数:69
相关论文
共 50 条