BV functions in Hilbert spaces

被引:0
|
作者
Giuseppe Da Prato
Alessandra Lunardi
机构
[1] Scuola Normale Superiore,Dipartimento di Scienze Matematiche, Fisiche e Informatiche
[2] Università di Parma,undefined
来源
Mathematische Annalen | 2021年 / 381卷
关键词
28C20; 26E15; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the basic theory of BV functions in a Hilbert space X endowed with a (not necessarily Gaussian) probability measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We present necessary and sufficient conditions in order that a function u∈Lp(X,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L^p(X, \nu )$$\end{document} is of bounded variation. We also discuss the De Giorgi approach to BV functions through the behavior as t→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow 0$$\end{document} of ∫X‖∇T(t)u‖dν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _X \Vert \nabla T(t)u\Vert \,d\nu $$\end{document}, for a smoothing semigroup T(t). Particular attention is devoted to the case where u is the indicator function of a sublevel set {x:g(x)<r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x:\; g(x)<r\}$$\end{document} of a real Borel function g. We give several examples, for different measures ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} such as weighted Gaussian measures, infinite products of non Gaussian measures, and invariant measures of some stochastic PDEs such as reaction-diffusion equations and Burgers equation.
引用
收藏
页码:1653 / 1722
页数:69
相关论文
共 50 条
  • [31] A sharp Leibniz rule for BV functions inmetric spaces
    Lahti, Panu
    REVISTA MATEMATICA COMPLUTENSE, 2020, 33 (03): : 797 - 816
  • [32] Some Fine Properties of BV Functions on Wiener Spaces
    Ambrosio, Luigi
    Miranda, Michele, Jr.
    Pallara, Diego
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 212 - 230
  • [33] BV Functions and Nonlocal Functionals in Metric Measure Spaces
    Lahti, Panu
    Pinamonti, Andrea
    Zhou, Xiaodan
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (10)
  • [34] BV-SPACES AND THE BOUNDED COMPOSITION OPERATORS OF BV-FUNCTIONS ON CARNOT GROUPS
    Sboev, D. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (06) : 1420 - 1438
  • [35] On an approach to the interpolation of analytic functions in Hilbert spaces
    Parfenov, OG
    MATHEMATICAL NOTES, 1996, 60 (5-6) : 586 - 588
  • [36] Multiplication operators on Hilbert spaces of analytic functions
    B. Yousefi
    Archiv der Mathematik, 2004, 83 : 536 - 539
  • [37] Distance Functions for Reproducing Kernel Hilbert Spaces
    Arcozzi, N.
    Rochberg, R.
    Sawyer, E.
    Wick, B. D.
    FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 25 - +
  • [38] Groups, Jacobi functions, and rigged Hilbert spaces
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (03)
  • [40] HILBERT SPACES OF HOLOMORPHIC FUNCTIONS ON BOUNDED DOMAINS
    FISCHER, G
    MANUSCRIPTA MATHEMATICA, 1970, 3 (03) : 305 - &