BV functions in Hilbert spaces

被引:0
|
作者
Giuseppe Da Prato
Alessandra Lunardi
机构
[1] Scuola Normale Superiore,Dipartimento di Scienze Matematiche, Fisiche e Informatiche
[2] Università di Parma,undefined
来源
Mathematische Annalen | 2021年 / 381卷
关键词
28C20; 26E15; 49Q15;
D O I
暂无
中图分类号
学科分类号
摘要
We study the basic theory of BV functions in a Hilbert space X endowed with a (not necessarily Gaussian) probability measure ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document}. We present necessary and sufficient conditions in order that a function u∈Lp(X,ν)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in L^p(X, \nu )$$\end{document} is of bounded variation. We also discuss the De Giorgi approach to BV functions through the behavior as t→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow 0$$\end{document} of ∫X‖∇T(t)u‖dν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int _X \Vert \nabla T(t)u\Vert \,d\nu $$\end{document}, for a smoothing semigroup T(t). Particular attention is devoted to the case where u is the indicator function of a sublevel set {x:g(x)<r}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{x:\; g(x)<r\}$$\end{document} of a real Borel function g. We give several examples, for different measures ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} such as weighted Gaussian measures, infinite products of non Gaussian measures, and invariant measures of some stochastic PDEs such as reaction-diffusion equations and Burgers equation.
引用
收藏
页码:1653 / 1722
页数:69
相关论文
共 50 条
  • [1] BV functions in Hilbert spaces
    Da Prato, Giuseppe
    Lunardi, Alessandra
    MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1653 - 1722
  • [2] An introduction to BV functions in Wiener spaces
    Miranda, Michele, Jr.
    Novaga, Matteo
    Pallara, Diego
    VARIATIONAL METHODS FOR EVOLVING OBJECTS, 2015, 67 : 245 - 294
  • [3] Subgraphs of BV functions on RCD spaces
    Antonelli, Gioacchino
    Brena, Camillo
    Pasqualetto, Enrico
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (02)
  • [4] Subgraphs of BV functions on RCD spaces
    Gioacchino Antonelli
    Camillo Brena
    Enrico Pasqualetto
    Annals of Global Analysis and Geometry, 2024, 65
  • [5] BV functions in abstract Wiener spaces
    Ambrosio, Luigi
    Miranda, Michele, Jr.
    Maniglia, Stefania
    Pallara, Diego
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (03) : 785 - 813
  • [6] BV functions in a Hilbert space with respect to a Gaussian measure
    Ambrosio, Luigi
    Da Prato, Giuseppe
    Pallara, Diego
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2010, 21 (04) : 405 - 414
  • [7] BV Functions on Convex Domains in Wiener Spaces
    Lunardi, Alessandra
    Miranda, Michele, Jr.
    Pallara, Diego
    POTENTIAL ANALYSIS, 2015, 43 (01) : 23 - 48
  • [8] BV Functions on Convex Domains in Wiener Spaces
    Alessandra Lunardi
    Michele Miranda
    Diego Pallara
    Potential Analysis, 2015, 43 : 23 - 48
  • [9] A COMPACTNESS RESULT FOR BV FUNCTIONS IN METRIC SPACES
    Don, Sebastiano
    Vittone, Davide
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 329 - 339
  • [10] Approximation of BV by SBV functions in metric spaces
    Lahti, Panu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (11)