Wintgen ideal submanifolds with a low-dimensional integrable distribution

被引:0
|
作者
Tongzhu Li
Xiang Ma
Changping Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
[3] Fujian Normal University,College of Mathematics and Computer Science
来源
关键词
Wintgen ideal submanifold; DDVV inequality; super-conformal surface; super-minimal surface; 53A30; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
Submanifolds in space forms satisfy the well-known DDVV inequality. A submanifold attaining equality in this inequality pointwise is called a Wintgen ideal submanifold. As conformal invariant objects, Wintgen ideal submanifolds are investigated in this paper using the framework of Möbius geometry. We classify Wintgen ideal submanfiolds of dimension m ⩽ 3 and arbitrary codimension when a canonically defined 2-dimensional distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} is integrable. Such examples come from cones, cylinders, or rotational submanifolds over super-minimal surfaces in spheres, Euclidean spaces, or hyperbolic spaces, respectively. We conjecture that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} generates a k-dimensional integrable distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_k$$\end{document} and k < m, then similar reduction theorem holds true. This generalization when k = 3 has been proved in this paper.
引用
收藏
页码:111 / 136
页数:25
相关论文
共 50 条