Wintgen ideal submanifolds with a low-dimensional integrable distribution

被引:0
|
作者
Tongzhu Li
Xiang Ma
Changping Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
[3] Fujian Normal University,College of Mathematics and Computer Science
来源
关键词
Wintgen ideal submanifold; DDVV inequality; super-conformal surface; super-minimal surface; 53A30; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
Submanifolds in space forms satisfy the well-known DDVV inequality. A submanifold attaining equality in this inequality pointwise is called a Wintgen ideal submanifold. As conformal invariant objects, Wintgen ideal submanifolds are investigated in this paper using the framework of Möbius geometry. We classify Wintgen ideal submanfiolds of dimension m ⩽ 3 and arbitrary codimension when a canonically defined 2-dimensional distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} is integrable. Such examples come from cones, cylinders, or rotational submanifolds over super-minimal surfaces in spheres, Euclidean spaces, or hyperbolic spaces, respectively. We conjecture that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} generates a k-dimensional integrable distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_k$$\end{document} and k < m, then similar reduction theorem holds true. This generalization when k = 3 has been proved in this paper.
引用
收藏
页码:111 / 136
页数:25
相关论文
共 50 条
  • [21] Wintgen ideal submanifolds: New examples, frame sequence and Mobius homogeneous classification
    Xie, Zhenxiao
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    ADVANCES IN MATHEMATICS, 2021, 381
  • [22] Generalized Wintgen ideal Legendrian submanifolds of generalized Sasakian-space forms
    Khan, Meraj Ali
    Mandal, Pradip
    Ozel, Cenap
    Hui, Shyamal Kumar
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2024, 17 (02): : 51 - 64
  • [23] Integrable Hamiltonian systems on low-dimensional Lie algebras
    Korotkevich, A. A.
    SBORNIK MATHEMATICS, 2009, 200 (11-12) : 1731 - 1766
  • [24] On Wintgen Ideal Submanifolds Satisfying Some Pseudo-symmetry Type Curvature Conditions
    Deszcz, Ryszard
    Glogowska, Malgorzata
    Petrovic-Torgasev, Miroslava
    Zafindratafa, Georges
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 72 - 96
  • [25] The strain distribution of low-dimensional semiconductor materials
    Zhou, WM
    Wang, CY
    ACTA PHYSICA SINICA, 2004, 53 (12) : 4308 - 4313
  • [26] A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras
    Alexey Bolsinov
    Jinrong Bao
    Regular and Chaotic Dynamics, 2019, 24 : 266 - 280
  • [27] A Note about Integrable Systems on Low-dimensional Lie Groups and Lie Algebras
    Bolsinov, Alexey
    Bao, Jinrong
    REGULAR & CHAOTIC DYNAMICS, 2019, 24 (03): : 266 - 280
  • [28] Spatial distribution of guest in low-dimensional nanospace materials
    Ogawa, Makoto
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [29] Low-dimensional topology, low-dimensional field theory and representation theory
    Fuchs, Juergen
    Schweigert, Christoph
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 255 - 267
  • [30] Intrinsic Protein Distribution on Manifolds Embedded in Low-Dimensional Space
    Cheng, Wei-Chen
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT II, 2012, 7332 : 41 - 48