Wintgen ideal submanifolds with a low-dimensional integrable distribution

被引:0
|
作者
Tongzhu Li
Xiang Ma
Changping Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
[3] Fujian Normal University,College of Mathematics and Computer Science
来源
关键词
Wintgen ideal submanifold; DDVV inequality; super-conformal surface; super-minimal surface; 53A30; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
Submanifolds in space forms satisfy the well-known DDVV inequality. A submanifold attaining equality in this inequality pointwise is called a Wintgen ideal submanifold. As conformal invariant objects, Wintgen ideal submanifolds are investigated in this paper using the framework of Möbius geometry. We classify Wintgen ideal submanfiolds of dimension m ⩽ 3 and arbitrary codimension when a canonically defined 2-dimensional distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} is integrable. Such examples come from cones, cylinders, or rotational submanifolds over super-minimal surfaces in spheres, Euclidean spaces, or hyperbolic spaces, respectively. We conjecture that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} generates a k-dimensional integrable distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_k$$\end{document} and k < m, then similar reduction theorem holds true. This generalization when k = 3 has been proved in this paper.
引用
收藏
页码:111 / 136
页数:25
相关论文
共 50 条
  • [31] Low-Dimensional Gradient Helps Out-of-Distribution Detection
    Wu, Yingwen
    Li, Tao
    Cheng, Xinwen
    Yang, Jie
    Huang, Xiaolin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 11378 - 11391
  • [32] Low-dimensional optics
    Flory, Franois
    Escoubas, Ludovic
    Le Rouzo, Judikael
    Berginc, Gerard
    Lee, Cheng-Chung
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [33] Low-dimensional perovskites
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531
  • [34] Low-dimensional BEC
    Sevilla, FJ
    Grether, M
    Fortes, M
    de Llano, M
    Rojo, O
    Solis, MA
    Valladares, AA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 281 - 286
  • [35] Low-dimensional BEC
    F. J. Sevilla
    M. Grether
    M. Fortes
    M. de Llano
    O. Rojo
    M. A. Solís
    A. A. Valladares
    Journal of Low Temperature Physics, 2000, 121 : 281 - 286
  • [36] Low-dimensional thermoelectrics
    Balandin, A
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 5-6 : U1 - U1
  • [37] Low-dimensional systems
    Borovitskaya, Elena
    Shur, Michael S.
    International Journal of High Speed Electronics and Systems, 2002, 12 (01) : 1 - 14
  • [38] Low-dimensional perovskites
    Olga Bubnova
    Nature Nanotechnology, 2018, 13 : 531 - 531
  • [39] LOW-DIMENSIONAL SOLIDS
    DAY, P
    CHEMISTRY IN BRITAIN, 1983, 19 (04) : 306 - &
  • [40] Low-dimensional thermoelectricity
    Heremans, JP
    ACTA PHYSICA POLONICA A, 2005, 108 (04) : 609 - 634