Wintgen ideal submanifolds with a low-dimensional integrable distribution

被引:0
|
作者
Tongzhu Li
Xiang Ma
Changping Wang
机构
[1] Beijing Institute of Technology,Department of Mathematics
[2] Peking University,LMAM, School of Mathematical Sciences
[3] Fujian Normal University,College of Mathematics and Computer Science
来源
关键词
Wintgen ideal submanifold; DDVV inequality; super-conformal surface; super-minimal surface; 53A30; 53A55;
D O I
暂无
中图分类号
学科分类号
摘要
Submanifolds in space forms satisfy the well-known DDVV inequality. A submanifold attaining equality in this inequality pointwise is called a Wintgen ideal submanifold. As conformal invariant objects, Wintgen ideal submanifolds are investigated in this paper using the framework of Möbius geometry. We classify Wintgen ideal submanfiolds of dimension m ⩽ 3 and arbitrary codimension when a canonically defined 2-dimensional distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} is integrable. Such examples come from cones, cylinders, or rotational submanifolds over super-minimal surfaces in spheres, Euclidean spaces, or hyperbolic spaces, respectively. We conjecture that if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_2$$\end{document} generates a k-dimensional integrable distribution \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_k$$\end{document} and k < m, then similar reduction theorem holds true. This generalization when k = 3 has been proved in this paper.
引用
收藏
页码:111 / 136
页数:25
相关论文
共 50 条
  • [1] Wintgen ideal submanifolds with a low-dimensional integrable distribution
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (01) : 111 - 136
  • [2] Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds
    Chen, Bang-Yen
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2021, 14 (01): : 6 - 45
  • [3] ON DESZCZ SYMMETRIES OF WINTGEN IDEAL SUBMANIFOLDS
    Petrovic-Torgasev, Miroslava
    Verstraelen, Leopold
    ARCHIVUM MATHEMATICUM, 2008, 44 (01): : 57 - 67
  • [4] Mobius geometry of three-dimensional Wintgen ideal submanifolds in
    Xie ZhenXiao
    Li TongZhu
    Ma Xiang
    Wang ChangPing
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (06) : 1203 - 1220
  • [5] ON THE ROTER TYPE OF WINTGEN IDEAL SUBMANIFOLDS
    Decu, Simona
    Petrovic-Torgasev, Miroslava
    Sebekovic, Aleksandar
    Verstraelen, Leopold
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (01): : 75 - 90
  • [6] Wintgen ideal submanifolds with vanishing Mobius form
    Xie, Zhenxiao
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2015, 48 (04) : 331 - 343
  • [7] Three special classes of Wintgen ideal submanifolds
    Xie, Zhenxiao
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 523 - 533
  • [8] Ricci and Casorati Principal Directions of Wintgen Ideal Submanifolds
    Decu, Simona
    Petrovic-Torgasev, Miroslava
    Sebekovic, Aleksandar
    Verstraelen, Leopold
    FILOMAT, 2014, 28 (04) : 657 - 661
  • [9] Wintgen ideal submanifolds: reduction theorems and a coarse classification
    Zhenxiao Xie
    Tongzhu Li
    Xiang Ma
    Changping Wang
    Annals of Global Analysis and Geometry, 2018, 53 : 377 - 403
  • [10] Wintgen ideal submanifolds: reduction theorems and a coarse classification
    Xie, Zhenxiao
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 53 (03) : 377 - 403