Harnack inequalities and sub-Gaussian estimates for random walks

被引:0
|
作者
A. Grigor'yan
A. Telcs
机构
[1] Department of Mathematics,
[2] London SW7 2BZ,undefined
[3] UK 662 (e-mail: a.grigoryan@ic.ac.uk) ,undefined
[4] IMC,undefined
[5] Graduate School of Business,undefined
[6] Zrinyi u. 14,undefined
[7] Budapest,undefined
[8] 1051,undefined
[9] Hungary (e-mail: h197tel@ella.hu) ,undefined
来源
Mathematische Annalen | 2002年 / 324卷
关键词
Exit Time; Harnack Inequality; Volume Property; Doubling Volume; Parabolic Harnack Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta $\end{document}-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to the sub-Gaussian estimate for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{\beta }$\end{document}. The latter condition can be replaced by a certain estimate of the resistance of annuli.
引用
收藏
页码:521 / 556
页数:35
相关论文
共 50 条