EXPONENTIAL INTEGRABILITY OF SUB-GAUSSIAN VECTORS

被引:9
|
作者
FUKUDA, R
机构
[1] Department of Mathematics, Kyushu University 33, Fukuoka
关键词
D O I
10.1007/BF01203168
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we define two classes of Banach space (B, ∥·∥)-valued random vectors called sub-Gaussian vectors and γ-sub-Gaussian vectors. The main purpose of this paper is to prove the exponential integrability of a sub-Gaussian vector X, that is, {Mathematical expression} for some ε>0, in the case where B=Lp. On the other hand, using the arguments of X. Fernique and M. Talagrand, we also show that the exponential integrability of a γ-sub-Gaussian vector in an arbitrary separable Banach space. These two definitions of sub-Gaussian vectors and γ-sub-Gaussian vectors are not comparable, and neither of these definitions is a necessary condition for the exponential integrability. We shall give illuminating examples. © 1990 Springer-Verlag.
引用
收藏
页码:505 / 521
页数:17
相关论文
共 50 条
  • [1] INEQUALITIES FOR THE DISTRIBUTIONS OF FUNCTIONALS OF SUB-GAUSSIAN VECTORS
    Buldygin, V. V.
    Pechuk, E. D.
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2009, 80 : 23 - 33
  • [2] On simulating exchangeable sub-Gaussian random vectors
    Mohammadpour, A
    Soltani, AR
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 69 (01) : 29 - 36
  • [3] An Analytical EM Algorithm for Sub-Gaussian Vectors
    Kabasinskas, Audrius
    Sakalauskas, Leonidas
    Vaiciulyte, Ingrida
    [J]. MATHEMATICS, 2021, 9 (09)
  • [4] SUB-GAUSSIAN RANDOM VECTORS AND THE LEVY BAXTER THEOREM
    BULDYGIN, VV
    KOZACHENKO, YV
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1987, 31 (03) : 536 - 536
  • [5] Concentration inequalities under sub-Gaussian and sub-exponential conditions
    Maurer, Andreas
    Pontil, Massimiliano
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
    Bayraktar, Turgay
    Karaca, Emel
    [J]. COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [7] THE INTEGRABILITY OF GAUSSIAN VECTORS
    TALAGRAND, M
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 68 (01): : 1 - 8
  • [8] SUB-GAUSSIAN MEAN ESTIMATORS
    Devroye, Luc
    Lerasle, Matthieu
    Lugosi, Gabor
    Olivetra, Roberto I.
    [J]. ANNALS OF STATISTICS, 2016, 44 (06): : 2695 - 2725
  • [9] CERTAIN PROPERTIES OF GAUSSIAN AND SUB-GAUSSIAN SEQUENCES
    YADRENKO, OM
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (10): : 21 - 23
  • [10] Sub-Weibull distributions: Generalizing sub-Gaussian and sub-Exponential properties to heavier tailed distributions
    Vladimirova, Mariia
    Girard, Stephane
    Hien Nguyen
    Arbel, Julyan
    [J]. STAT, 2020, 9 (01):