Harnack inequalities and sub-Gaussian estimates for random walks

被引:0
|
作者
A. Grigor'yan
A. Telcs
机构
[1] Department of Mathematics,
[2] London SW7 2BZ,undefined
[3] UK 662 (e-mail: a.grigoryan@ic.ac.uk) ,undefined
[4] IMC,undefined
[5] Graduate School of Business,undefined
[6] Zrinyi u. 14,undefined
[7] Budapest,undefined
[8] 1051,undefined
[9] Hungary (e-mail: h197tel@ella.hu) ,undefined
来源
Mathematische Annalen | 2002年 / 324卷
关键词
Exit Time; Harnack Inequality; Volume Property; Doubling Volume; Parabolic Harnack Inequality;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta $\end{document}-parabolic Harnack inequality for random walks on graphs is equivalent, on one hand, to the sub-Gaussian estimate for the transition probability and, on the other hand, to the conjunction of the elliptic Harnack inequality, the doubling volume property, and the fact that the mean exit time in any ball of radius R is of the order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R^{\beta }$\end{document}. The latter condition can be replaced by a certain estimate of the resistance of annuli.
引用
收藏
页码:521 / 556
页数:35
相关论文
共 50 条
  • [31] Sub-Gaussian random variables and Wiman's inequality for analytic functions
    Kuryliak, A. O.
    Skaskiv, O. B.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2023, 15 (01) : 306 - 314
  • [32] Improved Hoeffding inequality for dependent bounded or sub-Gaussian random variables
    Tanoue, Yuta
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2021, 6 (01): : 53 - 60
  • [33] Harnack Inequality for Subordinate Random Walks
    Mimica, Ante
    Sebek, Stjepan
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (02) : 737 - 764
  • [34] On distribution of the norm of deviation of a sub-Gaussian random process in Orlicz spaces
    Yamnenko, Rostyslav E.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2015, 23 (03) : 187 - 194
  • [35] Harnack Inequality for Subordinate Random Walks
    Ante Mimica
    Stjepan Šebek
    Journal of Theoretical Probability, 2019, 32 : 737 - 764
  • [36] SUB-GAUSSIAN MEAN ESTIMATORS
    Devroye, Luc
    Lerasle, Matthieu
    Lugosi, Gabor
    Olivetra, Roberto I.
    ANNALS OF STATISTICS, 2016, 44 (06): : 2695 - 2725
  • [37] CERTAIN PROPERTIES OF GAUSSIAN AND SUB-GAUSSIAN SEQUENCES
    YADRENKO, OM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1983, (10): : 21 - 23
  • [38] Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps
    Barlow, Martin T.
    Bass, Richard F.
    Kumagai, Takashi
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (02) : 297 - 320
  • [39] Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps
    Martin T. Barlow
    Richard F. Bass
    Takashi Kumagai
    Mathematische Zeitschrift, 2009, 261 : 297 - 320
  • [40] A UNIFORM BOUND ON THE OPERATOR NORM OF SUB-GAUSSIAN RANDOM MATRICES AND ITS APPLICATIONS
    Franguridi, Grigory
    Moon, Hyungsik Roger
    ECONOMETRIC THEORY, 2022, 38 (06) : 1073 - 1091