On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems

被引:0
|
作者
Jeovanny de Jesus Muentes Acevedo
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
关键词
Topological entropy; Strong topology; Non-autonomous dynamical systems; Non-stationary dynamical systems; 37A35; 37B40; 37B55;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a compact Riemannian manifold. The set Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document} consisting of sequences (fi)i∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{i})_{i\in {\mathbb {Z}}}$$\end{document} of Cr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{r}$$\end{document}-diffeomorphisms on M can be endowed with the compact topology or with the strong topology. A notion of topological entropy is given for these sequences. I will prove this entropy is discontinuous at each sequence if we consider the compact topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}. On the other hand, if r≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ r\ge 1$$\end{document} and we consider the strong topology on Fr(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {F}^{r}(M)$$\end{document}, this entropy is a continuous map.
引用
收藏
页码:89 / 106
页数:17
相关论文
共 50 条
  • [1] On the Continuity of the Topological Entropy of Non-autonomous Dynamical Systems
    Muentes Acevedo, Jeovanny de Jesus
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (01): : 89 - 106
  • [2] The Baire Class of Topological Entropy of Non-Autonomous Dynamical Systems
    Astrelina, A. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2018, 73 (05) : 203 - 206
  • [3] Topological entropy for non-autonomous iterated function systems
    Si, Hongying
    Liang, Yali
    Zhang, Junjie
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (09) : 1354 - 1369
  • [4] NON-AUTONOMOUS SYSTEMS ON LIE GROUPS AND THEIR TOPOLOGICAL ENTROPY
    Nia, M. Fatehi
    Moeinaddini, F.
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2019, 25 (04): : 360 - 372
  • [5] Some results on the entropy of non-autonomous dynamical systems
    Kawan, Christoph
    Latushkin, Yuri
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (03): : 251 - 279
  • [6] Estimations of topological entropy for non-autonomous discrete systems
    Shao, Hua
    Shi, Yuming
    Zhu, Hao
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (03) : 474 - 484
  • [7] ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS
    Ghane, Fatemeh H.
    Sarkooh, Javad Nazarian
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) : 1561 - 1597
  • [8] On non-autonomous dynamical systems
    Anzaldo-Meneses, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (04)
  • [9] NON-AUTONOMOUS DYNAMICAL SYSTEMS
    Carvalho, Alexandre N.
    Langa, Jose A.
    Robinson, James C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (03): : 703 - 747
  • [10] Variational Principle for Topological Pressure on Subsets of Non-autonomous Dynamical Systems
    Sarkooh, Javad Nazarian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (02)