The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices

被引:0
|
作者
Delphine Féral
Sandrine Péché
机构
[1] Université Paul Sabatier,Institut de Mathématiques, Laboratoire de Statistique et Probabilités
[2] Institut Fourier BP 74,undefined
来源
关键词
Large Eigenvalue; Distinct Vertex; Simple Path; Common Edge; Negligible Contribution;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue for some non-necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (cf. [11]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration.
引用
收藏
页码:185 / 228
页数:43
相关论文
共 50 条
  • [31] Approximating the largest eigenvalue of network adjacency matrices
    Restrepo, Juan G.
    Ott, Edward
    Hunt, Brian R.
    PHYSICAL REVIEW E, 2007, 76 (05)
  • [32] Fast Estimation of Tridiagonal Matrices Largest Eigenvalue
    Coelho, Diego F. G.
    Dimitrov, Vassil S.
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [33] Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices
    Bini, D. A.
    Eidelman, Y.
    Gemignani, L.
    Gohberg, I.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 566 - 585
  • [34] Moderate deviations for the eigenvalue counting function of Wigner matrices
    Doering, Hanna
    Eichelsbacher, Peter
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 27 - 44
  • [35] EIGENVALUE VARIANCE BOUNDS FOR WIGNER AND COVARIANCE RANDOM MATRICES
    Dallaporta, S.
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (03)
  • [36] Mesoscopic eigenvalue statistics for Wigner-type matrices
    Riabov, Volodymyr
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2025, 61 (01): : 129 - 154
  • [37] QUANTITATIVE CLT FOR LINEAR EIGENVALUE STATISTICS OF WIGNER MATRICES
    Bao, Zhigang
    He, Yukun
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 5171 - 5207
  • [38] Eigenvalue distribution of large random matrices, from one matrix to several coupled matrices
    Eynard, B
    NUCLEAR PHYSICS B, 1997, 506 (03) : 633 - 664
  • [39] Eigenvalue computation for unitary rank structured matrices
    Delvaux, Steven
    Van Barel, Marc
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 213 (01) : 268 - 287
  • [40] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR COMPLEX WISHART MATRICES
    Jones, Scott R.
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    Cochran, Douglas
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3439 - 3443