The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices

被引:0
|
作者
Delphine Féral
Sandrine Péché
机构
[1] Université Paul Sabatier,Institut de Mathématiques, Laboratoire de Statistique et Probabilités
[2] Institut Fourier BP 74,undefined
来源
关键词
Large Eigenvalue; Distinct Vertex; Simple Path; Common Edge; Negligible Contribution;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this paper is to establish universality of the fluctuations of the largest eigenvalue for some non-necessarily Gaussian complex Deformed Wigner Ensembles. The real model is also considered. Our approach is close to the one used by A. Soshnikov (cf. [11]) in the investigations of classical real or complex Wigner Ensembles. It is based on the computation of moments of traces of high powers of the random matrices under consideration.
引用
收藏
页码:185 / 228
页数:43
相关论文
共 50 条
  • [21] MESOSCOPIC EIGENVALUE STATISTICS OF WIGNER MATRICES
    He, Yukun
    Knowles, Antti
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (03): : 1510 - 1550
  • [22] Lower bounds for the largest eigenvalue of a symmetric matrix under perturbations of rank one
    Benasseni, Jacques
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (05): : 565 - 569
  • [23] On finite rank deformations of Wigner matrices
    Pizzo, Alessandro
    Renfrew, David
    Soshnikov, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (01): : 64 - 94
  • [24] Unbounded largest eigenvalue of large sample covariance matrices: Asymptotics, fluctuations and applications
    Merlevede, Florence
    Najim, Jamal
    Tian, Peng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 577 : 317 - 359
  • [25] Mesoscopic eigenvalue density correlations of Wigner matrices
    Yukun He
    Antti Knowles
    Probability Theory and Related Fields, 2020, 177 : 147 - 216
  • [26] Mesoscopic eigenvalue density correlations of Wigner matrices
    He, Yukun
    Knowles, Antti
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 147 - 216
  • [27] The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
    Cheng, GuangHui
    Luo, XiaoXue
    Li, Liang
    APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1191 - 1196
  • [28] Forward stable eigenvalue decomposition of rank-one modifications of diagonal matrices
    Stor, N. Jakovcevic
    Slapnicar, I.
    Barlow, J. L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 487 : 301 - 315
  • [29] Solving inverse eigenvalue problems via Householder and rank-one matrices
    Zhu, Sheng-xin
    Gu, Tong-xiang
    Liu, Xing-ping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) : 318 - 334
  • [30] Efficient computation of tridiagonal matrices largest eigenvalue
    Coelho, Diego F. G.
    Dimitrov, Vassil S.
    Rakai, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 268 - 275